terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Abstract

Atmospheric CO2 levels have been rising continuously since the industrial revolution, affecting crop physiology, yield and quality of harvest products, and grapevine is no exception [1]. Most of previously reported studies used potted plants in controlled environments, and explored grapevine response to relatively high CO2 levels, 700 ppm or more. The vineyardFACE, established in Geisenheim in 2012, uses a free air carbon dioxide enrichment (FACE) system to simulate a moderate (ambient +20%) increase in atmospheric CO2 in a vineyard planted with cvs. Cabernet-Sauvignon and Riesling grafted on rootstock 161-49 Couderc and SO4, respectively. Using this experimental setup, we report a 3 years survey of grape yield, and berry composition responses to a moderate increase in ambient CO2. An increase in net assimilation in leaves was observed for both cultivars, as well as a significant increase in fruit yield per vine. Berry size was not significantly affected, even though a general trend of larger berries was noted under elevated CO2. Berry ripening dynamics and composition at harvest were largely unaffected by the CO2 level increase, with the noticeable exception that anthocyanin levels tended to be lower under elevated CO2, compared to ambient. Profiling of central carbon metabolism intermediates and branching points to secondary metabolism pathways confirmed this result in both cultivars. Must terpene content analysis in Riesling showed little impact of elevated CO2, suggesting that its aromatic potential was probably unaffected. In conclusion, our results indicate that, although predicted mid-century CO2 levels do have an impact on grapevine yield, grape composition and oenological potential will probably be largely unaffected. However, it is noteworthy that non significant but consistent trends have been observed throughout the years, suggesting that the continuous rise in CO2 during the second half of the 21st century may finally overcome berry metabolic plasticity and acclimation to elevated CO2.

Acknowledgements: This work was supported by a PhD grant from the German-French University to C. Kahn (grant # DGSEIP/A1-3 N°2019-0203).

References:

1)  Clemens M.E. et al. (2022) Effects of elevated atmospheric carbon dioxide on the vineyard system of Vitis vinifera: a review. Am. J. Vitic. Enol. 73: 1-10, DOI 10.5344/ajev.2021.21029

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Eric Gomès*1, Cécile Kahn1, Susanne Tittmann2, Ghislaine Hilbert-Masson1, Regina Feil3, Christel Renaud1, John Lunn3, Manfred Stoll2

1EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33140 Villenave d’Ornon, France
2Department of General and Organic viticulture, Geisenheim University, Von-Lade Straße, Geisenheim, Germany
3Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Potsdam-Golm, D-14476 Potsdam-Golm, Germany

Contact the author*

Keywords

grapevine yield, berry composition, berry ripening, Free Air Carbon dioxide Enrichment

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Towards a better understanding of cultivar susceptibility to esca disease: results from a pluriannual common garden monitoring

Grapevine (Vitis vinifera L.) exhibits a high level of genetic and phenotypic diversity among the approximately 6000 cultivars recorded. This perennial crop is highly vulnerable to numerous fungal diseases, including esca, which is a complex vascular pathology that poses a significant threat to the wine sector, as there is currently no cost-efficient curative method[1]. In this context, an effective approach to mitigate the impact of such diseases is by leveraging the crop’s genetic diversity. Indeed, susceptibility to esca disease appears to vary between cultivars, under artificial or natural infection. However, the mechanisms and varietal characteristics underlying cultivar susceptibility to esca are still unknown.

Influence of irrigation frequency on berry phenolic composition of red grape varieties cultivated in four spanish wine-growing regions

The global warming phenomenon involves the frequency of extreme meteorological events accompanied by a change in rainfall distribution. Irrigation frequency (IF) affects the spatial and temporal soil water distribution but its effects on the phenolic composition of the grape have been scarcely studied. The aim of this work was to evaluate the effects of four deficit irrigation frequencies of 30 % ETo: one irrigation per day (T01), two irrigations per week (T03), one irrigation per week (T07) and one irrigation every two weeks (T15) on berry phenolic composition at harvest.

The effect of ozonated water treatment on the metabolic profile and resistance of vines to Downy and powdery mildew 

Ozone is a potent oxidizing compound that quickly decomposes into oxygen without residues. Previous works reported that ozone is not only a disinfectant that directly harms the pathogens of the vine but also activates systemic defense systems in the plant by activating oxidative stress. We assume these systemic defense mechanisms are essential to the vines’ resistance to downy and powdery mildew (Plasmopara viticola & Erysiphe necator, respectively). The goals of the research are to examine the effect of spraying with ozone water on the plant’s resistance against the mentioned pathogens as well as to characterize the metabolic profile of the plants treated with ozone as well as physiological characteristics in the vines such as the level of Photosynthesis and crop yield. Vines in the vineyard sprayed with ozone water at concentrations of 2 and 4 PPM weekly and biweekly, untreated control & conventional spray. Leaves were taken from vines 2,4,7,9 and 11 days after exposure to ozone and inoculated with the pathogens.

INTEGRAPE guidelines and tools: an effort of COST Action CA17111

INTEGRAPE was a European interdisciplinary network for “data integration to maximize the power of omics for grapevine improvement” (CA17111, https://integrape.eu/), funded by the European COST Association from September 2018 to 2022. This Action successfully developed guidelines and tools for data management and promoted the best practices in grapevine omics studies with a holistic future vision of: “Imagine having all data on grapevine accessible in a single place”.

Combined abiotic-biotic plant stresses on the roots of grapevine

In the 19th century, devastating outbreaks of phylloxera (Daktulosphaira vitifoliae Fitch), almost brought European viticulture to its knees. Phylloxera does not only take energy in form of sugars from the vine, but also affects the up- and down- regulations of genes, acts as a carbon sink and reprograms the physiology of the grapevines, including nutrient uptake and the defense system [1]. A key trait of rootstocks is the ability to perform well under high lime conditions as about 30 % of the land surface has calcareous soil. Iron deficiency not only causes the well-known problems of lime-induced chlorosis and stunted growth, but also affects the entire plant metabolism.