Terroir 2008 banner
IVES 9 IVES Conference Series 9 Integration of the AOC and terroir concepts by future professionals of the international wine sector

Integration of the AOC and terroir concepts by future professionals of the international wine sector

Abstract

A survey has been conducted on 32 students and 25 former students of 28 nationalities of an international master course training executives of the international Wine sector. They were asked about their perception of the concept of terroir, its potential application in their professional life and home country and the link they make between European viticulture and terroir. Two analysis were conducted: comparison pre-post terroir module on a same population and a descriptive analysis of two populations post terroir module: students and graduates. The following of the course increased the richness of the definition of terroir given, from environmental and technical factors to the inclusion of the interactions and historical and social factors. According to them, the notion of terroir is or will be applied in their professional life mainly for commercial differentiation or to improve the quality of wine through adapted cultural practices. European viticulture is seen as traditional and mainly “of terroirs”, but the persons surveyed consider that other wine regions in the world develop “terroir” viticulture. Coming from all other the world, they consider the application of terroir concept in their mother country as a means of differentiation of the products or improvement of cultural practices, but without taking an existing appellation system as model.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Christel RENAUD, Alain PAINEAU, Chantal MAURY, Frédérique JOURJON

UMT VINITERA, ESA, Laboratoire GRAPPE
55 rue Rabelais, BP 30748, 49007 Angers Cedex 01 – France

Contact the author

Keywords

terroir, formation, international, viticulture européenne

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

WHEY protein hydrolysates enhance grapevine resilience to abiotic and biotic stresses

Context and purpose of the study. The growing need for sustainable solutions in viticulture has led to increased interest in biostimulants that can enhance plant resilience to both abiotic and biotic stresses.

Preliminary results of water status and metabolite content of three new crossbreed winegrape genotypes

This study presents the preliminary results obtained in 2022, of the evaluation of three new crossbreed winegrape genotypes and their parental varieties, grown under controlled irrigation (60% ETc) and rainfed conditions in a wine-growing area with scarcity of water and high temperatures (Murcia, southeast Spain). The genotypes MC16 and MC80 were obtained from crosses between the varieties ‘Monastrell’ and ‘Cabernet Sauvignon’, and MS104 from crosses between ‘Monastrell’ and ‘Syrah’ [1]. The objective of this study was to analyse the physiological response and vegetative development of the 6 genotypes under the two irrigation conditions, and to study their effect on the content of soluble sugars and chlorophyll in the leaf.

Enhancing hydric stress tolerance by editing the VviMYB60 promoter with CRISPR/Cas9 

Climate change presents increasing challenges to viticulture, particularly with rising water stress contributing significantly to yield losses and damages. The identification of the MYB60 transcription factor, which regulates stomatal opening and closing in Arabidopsis thaliana and Vitis vinifera, offers potential solutions. Notably, knockout studies in Arabidopsis have shown reduced stomatal opening and increased drought tolerance in myb60 mutants. Additionally, the grapevine ortholog, VviMYB60, can restore the wild-type phenotype of Arabidopsis myb60 mutants. Further investigation of the Arabidopsis promoter region has revealed that mutations in DOF motifs lead to reduced expression of AtMYB60.

The taste of color: how grape anthocyanin fractions affect in-mouth perceptions

Anthocyanins are responsible for the red wine color and their ability to condense with tannins is considered as a contributor in astringency reduction. However, recent studies showed the possibility of anthocyanins to influence directly the in-mouth perception of wines.

Anthocyanin profile is differentially affected by high temperature, elevated CO2 and water deficit in Tempranillo (Vitis vinifera L.) clones

Anthocyanin potential of grape berries is an important quality factor in wine production. Anthocyanin concentration and profile differ among varieties but it also depends on the environmental conditions, which are expected to be greatly modified by climate change in the future. These modifications may significantly modify the biochemical composition of berries at harvest, and thus wine typicity. Among the diverse approaches proposed to reduce the potential negative effects that climate change may have on grape quality, genetic diversity among clones can represent a source of potential candidates to select better adapted plant material for future climatic conditions. The effects of individual and combined factors associated to climate change (increase of temperature, rise of air CO2 concentration and water deficit) on the anthocyanin profile of different clones of Tempranillo that differ in the length of their reproductive cycle were studied. The aim was to highlight those clones more adapted to maintain specific Tempranillo typicity in the future. Fruit-bearing cuttings were grown in controlled conditions under two temperatures (ambient temperature versus ambient temperature + 4ºC), two CO2 levels (400 ppm versus 700 ppm) and two water regimes (well-watered versus water deficit), both in combination or independently, in order to simulate future climate change scenarios. Elevated temperature increased anthocyanin acylation, whereas elevated CO2 and water deficit favoured the accumulation of malvidin derivatives, as well as the acylation and tri-hydroxylation level of anthocyanins. Although the changes in anthocyanin profile observed followed a common pattern among clones, such impact of environmental conditions was especially noticeable in one of the most widely distributed Tempranillo clones, the accession RJ43.