Terroir 2006 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2006 9 Influence of vine water status (Terroir 2006) 9 Estimation of plant hydraulics of grapevine in various «terroirs» in the Canton of Vaud (Switzerland)

Estimation of plant hydraulics of grapevine in various «terroirs» in the Canton of Vaud (Switzerland)

Abstract

The study of the physiological behaviour of the grapevine (cv. Chasselas), and of plant hydraulics in particular, was conducted on various « terroirs » in the Canton of Vaud (Switzerland) between 2001 and 2003 by Agroscope Changins-Wädenswil ACW, in collaboration with the firm I. Letessier (SIGALES) in Grenoble and the Federal Polytechnic School of Lausanne (EPFL). An evaluation of the vine plant hydraulics was made by means of physiological indicators (leaf and stem water potentials, transpiration and leaf stomatal conductance, carbon isotope discrimination and a model of transpirable soil water), in relation to estimations of the soil water reservoir and climatic factors. A close relationship came to light between the plant hydraulics, estimated by the pre-dawn leaf water potential, and the reserves of useful soil water (RU), from a network of about 30 study sites over a period of observation covering three climatically different years (2001 very wet year, 2002 intermediate year, and 2003 dry year). The study showed that measurement of the minimum stem water potential, carried out when evaporation was at its highest during the day, was able to account for momentary water stress. Observations from the present study indicate that the carbon isotope discrimination technique (ΔC13) in grape sugars was closely correlated to the plant hydraulics noted in the vine during the ripening stage (phase of sugar accumulation in berries). The use of a transpirable soil water model (Riou and Payan, 2001; Lebon et al., 2003) allowed the levels of water stress from the different sites to be determined according to the three principal components: precocity, duration and intensity. The total of transpirable soil water (TTSW) was estimated by combining the model with values of pre-dawn leaf water potential. The estimations of TTSW and RU observed at the different study sites were in good agreement.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Vivian ZUFFEREY and François MURISIER

Agroscope Changins-Wädenswil ACW, Centre viticole du Caudoz
Avenue Rochettaz 21, 1009 Pully, Suisse

Contact the author

Keywords

« terroir », plant hydraulics, leaf and stem water potential, carbon isotope

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Evaluating the suitability of hyper- and multispectral imaging to detect endogenic diseases in grapevine

Endogenic diseases often arise from pathogens that exist within the plant tissue, including fungi, bacteria, and viruses, which can remain latent and then emerge under stress conditions or favorable environmental conditions, causing symptoms that weaken vines or can lead to plant death.

Zoning, environment, and landscape: historic and perspective

Dans une approche globale, nous proposons la définition suivante du zonage : “représentation cartographique associée à une sectorisation du territoire en zones unitaires homogènes à partir de facteurs discriminants établis sur la base d’indicateurs quantifiables et d’avis d’experts”. La première application de cette méthode a porté sur la caractérisation du terroir en liaison avec les aspects qualitatifs des vins. Il est également possible d’envisager d’appliquer cette démarche dans les stratégies environnementales et paysagères liées aux approches territoriales et aux pratiques viticoles. Cette méthode peut servir de base dans la mise en œuvre des outils financiers associés aux mesures environnementales (CTE, aides spécifiques).

Unprecedented rainfall in northern Portugal

Aim: Climate is arguably one of the most important factors determining the quality of wine from any given grapevine variety. High rainfall during spring can promote growth of the vines but increases the risk of fungal disease, while vineyard operations can be disrupted, as machinery may be prevented from getting in the vineyard owing to muddy soils.

Adapting wine production to climate change through the exploration of the diversity of Vitis vinifera cultivars

Major factors involved in wine quality and typicity are soil type, climatic conditions, plant material (rootstock and cultivar), vineyard management practices and winemaking conditions.

The role of tomato juice serum in malolactic fermentation in wine

Introduction: Malolactic fermentation (MLF) is a common process in winemaking to reduce wine acidity, maintain microbial stability and modify wine aroma. However, successful MLF is often hampered by their sluggish or stuck activity of malolactic bacteria (MLB) which may be caused by nutrient deficiency, especially when MLB are inoculated after alcoholic fermentation (Alexandre et al., 2004; Lerm et al., 2010). Identification and characterization of essential nutrients and growth factors for MLB allows for production of highly efficient nutrient supplements for MLF.