Terroir 2006 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2006 9 Influence of vine water status (Terroir 2006) 9 Estimation of plant hydraulics of grapevine in various «terroirs» in the Canton of Vaud (Switzerland)

Estimation of plant hydraulics of grapevine in various «terroirs» in the Canton of Vaud (Switzerland)

Abstract

The study of the physiological behaviour of the grapevine (cv. Chasselas), and of plant hydraulics in particular, was conducted on various « terroirs » in the Canton of Vaud (Switzerland) between 2001 and 2003 by Agroscope Changins-Wädenswil ACW, in collaboration with the firm I. Letessier (SIGALES) in Grenoble and the Federal Polytechnic School of Lausanne (EPFL). An evaluation of the vine plant hydraulics was made by means of physiological indicators (leaf and stem water potentials, transpiration and leaf stomatal conductance, carbon isotope discrimination and a model of transpirable soil water), in relation to estimations of the soil water reservoir and climatic factors. A close relationship came to light between the plant hydraulics, estimated by the pre-dawn leaf water potential, and the reserves of useful soil water (RU), from a network of about 30 study sites over a period of observation covering three climatically different years (2001 very wet year, 2002 intermediate year, and 2003 dry year). The study showed that measurement of the minimum stem water potential, carried out when evaporation was at its highest during the day, was able to account for momentary water stress. Observations from the present study indicate that the carbon isotope discrimination technique (ΔC13) in grape sugars was closely correlated to the plant hydraulics noted in the vine during the ripening stage (phase of sugar accumulation in berries). The use of a transpirable soil water model (Riou and Payan, 2001; Lebon et al., 2003) allowed the levels of water stress from the different sites to be determined according to the three principal components: precocity, duration and intensity. The total of transpirable soil water (TTSW) was estimated by combining the model with values of pre-dawn leaf water potential. The estimations of TTSW and RU observed at the different study sites were in good agreement.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Vivian ZUFFEREY and François MURISIER

Agroscope Changins-Wädenswil ACW, Centre viticole du Caudoz
Avenue Rochettaz 21, 1009 Pully, Suisse

Contact the author

Keywords

« terroir », plant hydraulics, leaf and stem water potential, carbon isotope

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Co-design and evaluation of spatially explicit strategies of adaptation to climate change in a Mediterranean watershed

Climate change challenges differently wine growing systems, depending on their biophysical, sociological and economic features. Therefore, there is a need to locally design and evaluate adaptation strategies combining several technical options, and considering the local opportunities and constraints (e.g. water access, wine typicity). The case study took place in a typical and heterogeneous Mediterranean vineyard of 1,500 ha in the South of France. We developed a participatory modeling approach to (1) conceptualize local climate change issues and design spatially explicit adaptation strategies with stakeholders, (2) numerically evaluate their effects on phenology, yield and irrigation needs under the high-emissions climate change scenario RCP 8.5, and (3) collectively discuss simulation results. We organized five sets of workshops, with in-between modeling phases. A process-based model was developed that allowed to evaluate the effects of six technical options (late varieties, irrigation, water saving by reducing canopy size, adjusting cover cropping, reducing density, and shading) with various distributions in the watershed, as well as vineyard relocation. Overall, we co-designed three adaptation strategies. Delay harvest strategy with late varieties showed little effects on decreasing air temperature during ripening. Water constraint limitation strategy would compensate for production losses if disruptive adaptations (e.g. reduced density) were adopted, and more land got access to irrigation. Relocation strategy would foster high premium wine production in the constrained mountainous areas where grapevine is less impacted by climate change. This research shows that a spatial distribution of technical changes gives room for adaptation to climate change, and that the collaboration with local stakeholders is a key to the identification of relevant adaptation. Further research should explore the potential of adaptation strategies based on soil quality improvement and on water stress tolerant varieties.

Rootstock mediated responses of grapevine (Vitis vinifera L.) metabolism and physiology to combined water deficit and salinity stress in Syrah grafts

Water deficit and salinity are increasingly affecting the viticulture and wine industry. These two stresses are intimately related; understanding the physiological and metabolic responses of grapevines to water deficit, salinity and combined stress is critical for developing strategies to mitigate the nega- tive impacts of these stresses on wine grape production. These strategies can include selecting more tolerant grapevine cultivars and graft combinations, improving irrigation management, and using soil amendments to reduce the effects of salinity. For this purpose, understanding the response of grape- vine metabolism to altered water balance and salinity is of pivotal importance.

Comparative study of the volatile substances and ellagitannins released to wine by barrels of Quercus pyrenaica, Quercus petraea and Quercus alba

The aim of the study was to study the volatile substances and ellagitannins released to wine by barrels of Quercus pyrenaica (Spanish Oak) in comparison with barrels of Quercus petraea (French Oak) and Quercus alba (American Oak) as well as to determine their sensory impact.

EVALUATING WINEMAKING APPLICATIONS OF ULTRAFILTRATION TECHNOLOGY

Ultrafiltration is a process that fractionates mixtures using semipermeable membranes, primarily on the basis of molecular weight. Depending on the nominal molecular weight cut-off (MWCO) specifications of the membrane, smaller molecules pass through the membrane into the ‘permeate’, while larger molecules are retained and concentrated in the ‘retentate’. This study investigated applications of ultrafiltration technology for enhanced wine quality and profitability. The key objective was to establish to what extent ultrafiltration could be used to manage phenolic compounds (associated with astringency or bitterness) and proteins (associated with haze formation) in white wine.

Productivity, quality, and thermal needs of the Piedirosso vine: four years of observations

The effects of temperature on cv Piedirosso, indigenous of the Campania region (South of Italy), were tested in order to study its possible influence on grapevine and to discover how to optimize the qualitative expression