Terroir 2006 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2006 9 Influence of vine water status (Terroir 2006) 9 Estimation of plant hydraulics of grapevine in various «terroirs» in the Canton of Vaud (Switzerland)

Estimation of plant hydraulics of grapevine in various «terroirs» in the Canton of Vaud (Switzerland)

Abstract

The study of the physiological behaviour of the grapevine (cv. Chasselas), and of plant hydraulics in particular, was conducted on various « terroirs » in the Canton of Vaud (Switzerland) between 2001 and 2003 by Agroscope Changins-Wädenswil ACW, in collaboration with the firm I. Letessier (SIGALES) in Grenoble and the Federal Polytechnic School of Lausanne (EPFL). An evaluation of the vine plant hydraulics was made by means of physiological indicators (leaf and stem water potentials, transpiration and leaf stomatal conductance, carbon isotope discrimination and a model of transpirable soil water), in relation to estimations of the soil water reservoir and climatic factors. A close relationship came to light between the plant hydraulics, estimated by the pre-dawn leaf water potential, and the reserves of useful soil water (RU), from a network of about 30 study sites over a period of observation covering three climatically different years (2001 very wet year, 2002 intermediate year, and 2003 dry year). The study showed that measurement of the minimum stem water potential, carried out when evaporation was at its highest during the day, was able to account for momentary water stress. Observations from the present study indicate that the carbon isotope discrimination technique (ΔC13) in grape sugars was closely correlated to the plant hydraulics noted in the vine during the ripening stage (phase of sugar accumulation in berries). The use of a transpirable soil water model (Riou and Payan, 2001; Lebon et al., 2003) allowed the levels of water stress from the different sites to be determined according to the three principal components: precocity, duration and intensity. The total of transpirable soil water (TTSW) was estimated by combining the model with values of pre-dawn leaf water potential. The estimations of TTSW and RU observed at the different study sites were in good agreement.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Vivian ZUFFEREY and François MURISIER

Agroscope Changins-Wädenswil ACW, Centre viticole du Caudoz
Avenue Rochettaz 21, 1009 Pully, Suisse

Contact the author

Keywords

« terroir », plant hydraulics, leaf and stem water potential, carbon isotope

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

What happens with the glutathione during winemaking and the storage of the wine?

We tried to give a part of the answer to this question by monitoring glutathione during winemaking and storage. The novelty of our approach is to quantify simultaneously the three known forms of glutathione: free glutathione (GSH), oxidized form (GSSG) and glutathione-S-sulfonate (GSSO3H).

Environmental and viticultural practice effects on the phenolic composition of grapes: impact on wine sensory properties

Grape phenolic compounds are located in the internal layers of grape skins and seeds. They are synthesized via the phenyl-propanoid biosynthetic pathway which is modulated by both biotic and abiotic factors.

What do we know about the kerosene/petrol aroma in riesling wines?

1,1,6-Trimethyl-1,2-dihydronaphthalene (TDN) is a controversial aroma component found in Riesling wines. It belongs to the family of C13-norisoprenoids and is mainly associated with kerosene/petrol notes. TDN can add complexity to the wine aroma at medium – low concentrations and deteriorate the wine bouquet when its content is high. No TDN aromas are usually perceived in young Riesling wines, but they can appear after several years of aging due to the gradual formation of TDN. Management of TDN in Riesling wines is an actual task, since global warming can promote formation of this compound and compromise the aromatic composition of wine. Therefore, the aim of the current work was, firstly, to study the sensory particularities of TDN in Riesling wine at various concentrations. Secondly, to investigate the ability of bottle closures to absorb (scalp) TDN from Riesling wine under various storage conditions. These studies also include the comparative assessment of our findings with previously published data. METHODS: sensory analysis, GC-MS (SBSE), HPLC,1H-NMR and other methods related to the synthesis and determination of TDN. RESULTS: First of all, the method of the synthesis of highly purified TDN (95% and 99.5%) was optimized [1].

High-throughput screening of physical-mechanical berry skin traits facilitates targeted selection of breeding material with resistance to Botrytis bunch rot and grape sunburn

The ongoing climate change implies an increasing mean air temperature, which is signified by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased risk for fungal diseases like downy mildew (DM) and Botrytis bunch rot (BBR) as well as for grape sunburn. To meet that demand, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality.

Influence of Lactiplantibacillus plantarum and Oenococcus oeni strains on sensory profile of sicilian nero d’avola wine after malolactic fermentation.

AIM: Malolactic fermentation is a process of decarboxylation of L-malic acid into L-lactic acid and carbon dioxide that leads to deacidification, modification of odors and flavors of wines [1]