Terroir 2006 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2006 9 Influence of vine water status (Terroir 2006) 9 Estimation of plant hydraulics of grapevine in various «terroirs» in the Canton of Vaud (Switzerland)

Estimation of plant hydraulics of grapevine in various «terroirs» in the Canton of Vaud (Switzerland)

Abstract

The study of the physiological behaviour of the grapevine (cv. Chasselas), and of plant hydraulics in particular, was conducted on various « terroirs » in the Canton of Vaud (Switzerland) between 2001 and 2003 by Agroscope Changins-Wädenswil ACW, in collaboration with the firm I. Letessier (SIGALES) in Grenoble and the Federal Polytechnic School of Lausanne (EPFL). An evaluation of the vine plant hydraulics was made by means of physiological indicators (leaf and stem water potentials, transpiration and leaf stomatal conductance, carbon isotope discrimination and a model of transpirable soil water), in relation to estimations of the soil water reservoir and climatic factors. A close relationship came to light between the plant hydraulics, estimated by the pre-dawn leaf water potential, and the reserves of useful soil water (RU), from a network of about 30 study sites over a period of observation covering three climatically different years (2001 very wet year, 2002 intermediate year, and 2003 dry year). The study showed that measurement of the minimum stem water potential, carried out when evaporation was at its highest during the day, was able to account for momentary water stress. Observations from the present study indicate that the carbon isotope discrimination technique (ΔC13) in grape sugars was closely correlated to the plant hydraulics noted in the vine during the ripening stage (phase of sugar accumulation in berries). The use of a transpirable soil water model (Riou and Payan, 2001; Lebon et al., 2003) allowed the levels of water stress from the different sites to be determined according to the three principal components: precocity, duration and intensity. The total of transpirable soil water (TTSW) was estimated by combining the model with values of pre-dawn leaf water potential. The estimations of TTSW and RU observed at the different study sites were in good agreement.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Vivian ZUFFEREY and François MURISIER

Agroscope Changins-Wädenswil ACW, Centre viticole du Caudoz
Avenue Rochettaz 21, 1009 Pully, Suisse

Contact the author

Keywords

« terroir », plant hydraulics, leaf and stem water potential, carbon isotope

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Environmental protection by means of (“Great”) vitiviniculture zonation

In the paper is discussed the first example of environmental protection, agreed in a wide term sense, by means of vitiviniculture zonations performed in Istria (Croatia) in the area of Butoniga lake

Effects of soil and climate on wine style in the Breede River Valley of South Africa: Sauvignon blanc and Cabernet-Sauvignon

Les effets du sol et du climat sur le style de vin ont été évalués pour des vignes irriguées à deux endroits différents de la vallée de la Breede, en Afrique du Sud. L’un des 2 endroits est cependant plus froid que l’autre, principalement en raison de températures nocturnes plus basses.

Plant fibers in comparison with other fining agents for the re-duction of pesticide residues and the effect on the volitile profile of Austrian white and red wines.

Pesticide residues in Austrian wines have so far been poorly documented. In 250 wines, 33 grape musts and 45 musts in fermentation, no limit values were exceeded, but in some cases high lev-els (>0.100 mg/l) of single residues were found, meaning that a reduction of these levels before bottling could make sense. In the course of this study, a white and a red wine were spiked with a mix of 23 pesticide residues from the group of fungicides (including botryticides), herbicides and insecticides. The influence of the following treatments on residue concentrations and volatile profiles were investigated: two activated charcoal products, a bentonite clay, two commer-cial mixed fining agents made of bentonite and charcoal, two yeast cell wall products, and a plant fiber-based novel filter additive. The results of this study show that all the agents tested reduced both residues and aromavolatile compounds in wine, with activated charcoal having the strongest effect and bentonite the weakest. The mixed agents and yeast wall products showed less aroma losses than charcoal products, but also lower residue reduction. Plant fibers showed good reduction of pesticides with moderate aroma damage, but these results need to be con-firmed under practical conditions.

Impact of reduction alcohol techiniques in the aromatic chemical profile of rosé Tempranillo wines

Studying the impact of reducing alcohol techniques in the chemical composition of the aromatic profile of rosé Tempranillo wines from the spanish region of Castilla-La Mancha INTRODUCTION: In the last decades there has been an increseasing demand of wines with low or non-existing alcohol concentration due to the negative effects that alcohol has in health. In spite of that, there are not laws that protect these products, and there is also a great difficulty in the elaboration of these type of wines due to the increasing temperatures because of climate change. This is why the oenological industry has made great advances in the development of different techniques that could satisfy consumers’ demands without modifying wine quality. The most used techniques have been post-fermentative ones.

Differentiating and grouping of oltrepo’ pavese environments according to grape maturation

The maturation patterns process has been very studied. In particular the modelization of the sugars and titratable acidity during the ripening period was an important approach, in particular for the prediction of harvest date (Barillere et al., 1988; Jourion et al.,1987; Maujean et al., 1983; Scienza, 1989). In Oltrepò Pavese, the widest viticultural district of Lombardy – Northern Italy – (about 15000 hectares), grape maturation trends shows high variability, due to the large variation in environmental characteristics of vineyards (altitude, exposure, soil type, mesoclimate) and to “cultivar x environment” interaction.