Terroir 2006 banner
IVES 9 IVES Conference Series 9 Classification of the wine-growing environment of Central Mancha (Spain). First works

Classification of the wine-growing environment of Central Mancha (Spain). First works

Abstract

This paper describes a zoning study performed on a vast territory of around 86,500 hectares, situated in the countryside area of La Mancha Central (Castilla-La Mancha). The aim of the study was to classify the environment according to a small number of ecological criteria, establish the relevant territorial units and generate thematic maps with the different levels of criteria employed and synthetic maps by crossing these criteria. We studied the spatial distribution of one qualitative environmental factor, the nature of the substrate (lithostratigraphy), and other quantitative factors relating to the topography of the territory, slopes, exposures and theoretical insolation. The crossing of information between the two most integrating factors, lithostratigraphy and accumulated insolation – allowed us to classify the territory into homogeneous cartographic units according to the levels of criteria used. These units were prepared using automatic means (SIG) and then compared by interpreting aerial photographs at a scale of 1:20,000 and field work. The definitive cartographic units were drawn on printed maps from the vineyard register and then converted into digital format using the corresponding Arc-Info module.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Jesús MARTINEZ (1), Julio PLAZA (2), Raquel ROMERO (1) et Adela MENA (1)

1: Instituto de la vid y el vino de Castilla -La Mancha (IVICAM). Ctra. de Albacete, s/n 13700 Tomelloso (Ciudad Real), Espagne
2: Departamento de Geografía y Ordenación del Territorio. Facultad de Letras. Universidad de Castilla-La Mancha
(UCLM). Pº de Camilo José Cela, s/n, 13071 Ciudad Real, Espagne

Contact the author

Keywords

mapping, lithostratigraphy, La Mancha, zoning, theoretical insolation

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Assessing the Effectiveness of Electrodialysis in Controlling Brettanomyces Growth in Wine

Brettanomyces yeast can negatively impact the quality and stability of wines, posing a significant challenge to winemakers. [1] This study aims to develop novel management practices to limit Brettanomyces impact on wines by evaluating the effectiveness of electrodialysis (ED) technology in removing magnesium (Mg2+) from wine to prevent the development of Brettanomyces yeast. The ED technique utilizes charged membranes to extract ions from the wine, and it is considered an alternative to cold stabilization that requires less energy. [2]

A mechanistic investigation of H/D scrambling processes in flavonoids

Several classes of flavonoids, such as anthocyanins, flavonols, flavanols and flavones, undergo a slow H/D exchange on aromatic ring A, leading to full deuteration at positions C(6) and C(8). Within the flavanol class, H-C(6) and H-C(8) of catechin and epicatechin are slowly exchanged in D2O to the corresponding deuterated analogues; even quercetin, a relevant flavonol representative, shows the same behaviour in a D2O/DMSOd6 1:1 solution. Detailed kinetic measurements of these H/D scrambling processes are here reported by exploiting the time-dependent changes of their peak areas in the 1H-NMR spectra taken at different temperatures. A unifying reaction mechanism is also proposed based on our detailed kinetic observations, even taking into account pH and solvent effects. Molecular modelling and QM calculations were also carried out to shed more light on several molecular details of the proposed mechanism.

Sustainable viticulture’ the “semi‐minimal” pruned “hedge” system for grape vines long term experience on cv. Sangiovese (Vitis vinifera L.)

In previous experiments carried out in Bologna on Sangiovese grapevines raised with the Australian “Minimal Pruning” system, it has been shown that this system left an excessive burden of buds on the vine.

CHANGES IN CU FRACTIONS AND RIBOFLAVIN IN WHITE WINES DURING SHORT-TERM LIGHT EXPOSURE: IMPACTS OF OXYGEN AND BOTTLE COLOUR

Copper in white wine can be associated with Cu(II) organic acids (Cu fraction I), Cu(I) thiol species (Cu fraction II), and Cu sulfides (Cu fraction III). The first two fractions are associated with the repression of reductive aromas in white wine, but these fractions gradually decrease in concentration during the normal bottle aging of wine. Although exposure of white wine to fluorescent light is known to induce the accumulation of volatile sulfur compounds, causing light-struck aroma, the influence on the loss of protective Cu fractions is uncertain. Riboflavin is known to be a critical initiator of photochemical reac-tions in wine, but the rate of its decay under short-term light exposure in different coloured bottles and for wine of different oxygen concentrations is not well understood.

Impact of environmental conditions in vscs production during wine fermentation by Saccharomyces cerevisiae

The aroma of wine is one of the most important determinants of quality as it strongly influences the consumer’s acceptance or rejection. Among the thousands of molecules comprising the wine aroma, sulfur-containing compounds can be considered as a “double-edged sword”: some of them, deriving from varietal precursors provide fruity pleasant aromas, while other ones, produced by yeast metabolism are related to “unpleasant” aromas