Terroir 2008 banner
IVES 9 IVES Conference Series 9 Variability in intrinsic water use efficiency (WUEi) of eight red varieties grown in the center of the Iberian Peninsula during an atypical vintage year

Variability in intrinsic water use efficiency (WUEi) of eight red varieties grown in the center of the Iberian Peninsula during an atypical vintage year

Abstract

The study was performed in the summer of 2007, the point of confluence of a rather atypical vintage year in the area with abnormally low temperatures after a very humid spring. The experiment was carried out in a fully productive vineyard with espalier cultivation and different varieties in one of the largest terroirs of La Mancha (region in the center of Spain). Eight red varieties, i.e., five traditional varieties of the region (Tempranillo, Garnacha Tinta, Bobal, Tinto Velasco and Moravia Agria) and three international varieties (Merlot, Syrah and Cabernet Sauvignon), were studied.
Daily monitoring of the gas exchange was performed with a portable infrared gas exchange system at different development stages (closure of the bunches, veraison and maturity). The recorded measurements allowed to determine, for each studied variety, the values of net photosynthesis (AN), stomatal conductance (gs) and transpiration (E) as well as to calculate intrinsic water use efficiency (WUEi).
The results showed significant differences between varieties as far as the gas exchange parameters are concerned. Bobal, Moravia Agria and Cabernet Sauvignon showed rather high assimilation rates (AN) during the day, usually above the rest. In turn, the WUEi proved that the Garnacha Tinta and Tempranillo varieties belong to the most efficient group under moderate water stress conditions.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type: Article

Authors

Jesús MARTÍNEZ GASCUEÑA and Juan Luis CHACÓN VOZMEDIANO

Instituto de la Vid y del Vino de Castilla-La Mancha (IVICAM).
Ctra. de Albacete, s/n. 13700 Tomelloso (Ciudad Real), Spain

Contact the author

Keywords

varieties, intrinsic water use efficiency, photosynthesis, Vitis vinífera

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

CHARACTERIZATION OF THE VOLATILE COMPOUNDS PROFILE OF COMMERCIAL GRAPPAS OBTAINED FROM THE POMACE OF AMARONE WINES

Grappa is a traditional Italian alcoholic beverage, with an alcohol content generally between 40-60% vol., obtained from the distillation of grape pomace used for the production of wine. Grappa are often aged in wooden barrels. There are various types of grappa: young, aromatic, aged, extra-aged depending on whether the distillate comes from aromatic vines or is aged in wooden barrels for shorter or longer periods. There is also flavored grappa if herbs, fruit or roots are added. All this makes it an extremely heterogeneous product both from an organoleptic and compositional point of view.

Zonificación climática de las D.O. Rueda y Toro y vinos de la tierra de medina del campo

La producción vitícola es el resultado de una serie de factores influyentes (variedad, patron) dentro de un medio ecológico­-climatico-edafico, en el que se interactua por medio de técnicas de cultivo adecuadas.

Molecular characterization of a variegated grapevine mutant cv Bruce’s Sport

Variegation, a frequently observed trait in plants, is characterized by the occurrence of white or discoloured plant tissue. This phenomenon is attributed to genetic mosaicism or chimerism, potentially impacting the epidermal (L1) and subepidermal (L2) cell layers. In grapevine, variegation manifests as white or paler leaf, flower, or berry tissues, often leading to stunted growth and impeded development. Despite its prevalence, variegation in grapevines remains understudied.

Produce wines with no quantifiable phytosanitary residues – Impact of washing grapes?

Consumer expectations are increasingly shifting towards “residue-free wines.” However, from an analytical standpoint, “zero” does not exist. Laboratories often use the quantification limits of analysis methods to signify ‘zero.’ Improved techniques now allow for the quantification of levels that were previously undetectable. This is why we prefer to use the term “unquantifiable residue” rather than “absence of residues.”

Aromas of Riesling wine: impact of bottling and storage conditions

Storage temperature and bottling parameters are among the most important factors, which influence the development of wine after bottling. It is well studied that higher storage temperatures speed up chemical reactions and results in faster wine aging [1,2]. It is also known that higher SO2 level and lower oxygen content provide better protection and longer shelf-life for the wine. At the same time, the mechanisms of chemical transformations of wine aromas during the aging process are not fully understood. In particular, how oxidation reactions contribute to the transformations of varietal aroma compounds.In the present study [3], we investigated the development of Riesling wine depending on a series of bottling conditions, which differed in the free SO2 level in wine (low—13 mg/L, medium—24 mg/L, high—36 mg/L), CO2 treatment of the headspace.