Terroir 2006 banner
IVES 9 IVES Conference Series 9 Discriminant value of soil properties for terroir zoning

Discriminant value of soil properties for terroir zoning

Abstract

Environmental analysis (climate, vegetation, geomorfoloy-lanscape, lithology and soil) and its integration in a quality index taking the Appellation of Origin as the sole universe are used as general methodology for terroir zoning in Spain (Sotés and Gómez-Miguel, 1986-2005). This methodology is also applied to specific aspects of different Spanish Appellations of Origin (size, distribution and landscape peculiarities and vine occupation index). In this work, the whole set of results of all Appellations of Origin is taken as the universe (2.323.094 ha of surface and 144.248 ha of vineyard) and the two higher taxonomic units (soil series), where more than 75 % of the vineyard is located, are taken as comparative elements. Unit characterization is made with ninety soil variables and a multicriterion method, which explains behavior differences in these variables and in the vineyard quality index, is used for comparison. This analysis shows how every compared unit has a more similar behaviour to different units of the same Appellation than to other units with the same soil taxonomy but from different Appellations, except for more closed Appellations with similar environmental characteristics. The value of soil variables as discriminant elements for terroir classification in zoning studies can, then, be known. In the studied cases of this work, the overall statistic behavior of the variables set is related to the wine production specific characteristics of every Appellation.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Vicente GÓMEZ-MIGUEL and Vicente SOTÉS

Universidad Politécncia de Madrid
Avda Complutense s/n. 28040 Madrid, España

Contact the author

Keywords

terroir, soil, zoning, geomorphology, Spain

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Optimizing stomatal traits for future climates

Stomatal traits determine grapevine water use, carbon supply, and water stress, which directly impact yield and berry chemistry. Breeding for stomatal traits has the strong potential to improve grapevine performance under future, drier conditions, but the trait values that breeders should target are unknown. We used a functional-structural plant model developed for grapevine (HydroShoot) to determine how stomatal traits impact canopy gas exchange, water potential, and temperature under historical and future conditions in high-quality and hot-climate California wine regions (Napa and the Central Valley). Historical climate (1990-2010) was collected from weather stations and future climate (2079-99) was projected from 4 representative climate models for California, assuming medium- and high-emissions (RCP 4.5 and 8.5). Five trait parameterizations, representing mean and extreme values for the maximum stomatal conductance (gmax) and leaf water potential threshold for stomatal closure (Ψsc), were defined from meta-analyses. Compared to mean trait values, the water-spending extremes (highest gmax or most negative Ysc) had negligible benefits for carbon gain and canopy cooling, but exacerbated vine water use and stress, for both sites and climate scenarios. These traits increased cumulative transpiration by 8 – 17%, changed cumulative carbon gain by -4 – 3%, and reduced minimum water potentials by 10 – 18%. Conversely, the water-saving extremes (lowest gmax or least negative Ψsc) strongly reduced water use and stress, but potentially compromised the carbon supply for ripening. Under RCP 8.5 conditions, these traits reduced transpiration by 22 – 35% and carbon gain by 9 – 16% and increased minimum water potentials by 20 – 28%, compared to mean values. Overall, selecting for more water-saving stomatal traits could improve water-use efficiency and avoid the detrimental effects of highly negative canopy water potentials on yield and quality, but more work is needed to evaluate whether these benefits outweigh the consequences of minor declines in carbon gain for fruit production.

Water deficit impacts grape development without dramatically changing thiol precursor levels

The use of new fungus disease-tolerant grapevine varieties is a long-term and promising solution to reduce chemical input in viticulture. However, little is known about the effects of water deficit (WD) on the thiol aromatic potential of new varieties coming up from breeding programs. Varietal thiols such as 3-sulfanylhexan-ol (3SH), 4-methyl-4-sulfanylpentan-2-one (4MSP) and their derivatives are powerful aromatic compounds present in wines coming from odorless precursors in grapes, and could contribute to the wine typicity of such varieties.

Microbial resources for improving the sustainability in oenology

Sulphur dioxide has long been considered an irreplaceable additive due to its numerous significant positive effects during winemaking and beyond.

Mycorrhizal symbiosis modulates flavonoid and amino acid profiles in grapes of Tempranillo and Cabernet Sauvignon 

Arbuscular mycorrhizal fungi (AMF) symbiosis is probably the most widespread beneficial interaction between plants and microorganisms. AMF has been widely reported to promote grapevine growth, water and nutrient uptake as well as both biotic and abiotic stress tolerance[1]. However, the impact of AMF on grape composition has been less studied. The aim of this work was to evaluate the effects of the association between two commercial grapevine cultivars (Tempranillo and Cabernet Sauvignon grafted onto 110 rootstock) and AMF on the anthocyanin, flavonol and amino acid concentrations and profiles of grapes.

Investigating the impact of grape exposure and UV radiations on rotundone in Vitis vinifera L. Tardif grapes under field trial conditions

Rotundone is the main aroma compound responsible for peppery notes in wines whose biosynthesis is negatively affected by heat and drought. Through the alteration of precipitation regime and the increase in temperature during maturation, climate change is expected to affect wine peppery typicality. In this context there is a demand for developing sustainable viticultural strategies to enhance rotundone accumulation or limit its degradation. It was recently proposed that ultraviolet (UV) radiations could stimulate rotundone production. The aim of this study was to investigate under field trial conditions the impact of grape exposure and UV treatments on rotundone in Vitis vinifera L. Tardif, an almost extinct grape variety from south-west France that can express particularly high rotundone levels. Four different treatments were compared in 2021 to a control treatment using a randomised complete block design with three replications per treatment. Grape exposure was manipulated through early or late defoliation. Leaf and laterals shoots were removed at Eichorn Lorenz growth stages 32 or 34 on the morning-sun side of the canopy. During grape maturation, UV radiations were either reduced by 99% by installing UV radiation-shielding sheets, or applied four times using the Boxilumix™ non thermal device (Asclepios Tech, Tournefeuille) with the aim of activating plant signalling pathway. Loggers displayed in solar radiation shields were used to assess the effect of such shielding sheets on air temperature within the bunch zone. The composition of grapes subjected to these treatments will be soon analysed for their rotundone content and basic classical laboratory analyses. Grapes will be harvested to elaborate wines under standardized small-scale vinification conditions (60kg) that will be assessed by a trained sensory panel.