Terroir 2006 banner
IVES 9 IVES Conference Series 9 Pedological criteria according to the French hierarchy of vintages, Appellations d’Origine Contrôlée (AOC): study of two toposequences located in the Burgundian “Côte”

Pedological criteria according to the French hierarchy of vintages, Appellations d’Origine Contrôlée (AOC): study of two toposequences located in the Burgundian “Côte”

Abstract

The concept of terroir is defined by a set of natural and human factors. On the slopy vineyards of the Burgundian « Côte », the « Appellations d’Origine Contrôlée (AOC) » spread out according to the slope in their order of quality : « AOC Grand Cru » at the top, « AOC Premier Cru » and « AOC Village » and « Bourgogne » on the piemont. In order to correlate the hierarchy of the vintages with the evolution of the topographic and pedological criteria, two toposequences were studied, in Gevrey Chambertin (« Côte de Nuits ») and Aloxe Corton (« Côte de Beaune »). Each profile was described according to STIPA 2000 guidelines, and was sampled for micro-morphological observations and physicochemical analyses. Such division of the vineyard expresses the character of the wines, according to two different lithologies, on which rendosols are established on the top of the flanks : hard limestones of Bathonian (« Côte de Nuits ») and marls of Oxfordian (« Côte de Beaune »). The soils on marls are less coloured and more calcareous than the others. On the slope and piemont, deeper, more or less calcareous soils develop on colluvial and others weathered materials. The permeability of the soils, which depends on the stoniness and the texture, is higher upstream than downstream. If the permeability is a prevailing factor in the classification of the AOC, the chemical factors have a more shaded impact : the total limestone content is maximal on the top of toposequences on the « AOC Grand Cru »; organic matter content tends to decrease downsteam, whereas the soil CEC is higher in the piemont.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Jean LEVEQUE, Edith TOULEMONDE and Francis ANDREUX

UMR INRA 1229 Microbiologie et Géochimie des Sols, Centre des Sciences de la Terre,
Université de Bourgogne, 6 boulevard Gabriel, 21000 Dijon, France

Contact the author

Keywords

terroir, AOC, hierarchy, toposequence, permeability

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Targeted UHPLC-QqQ-MS/MS metabolomics for phenol identification in grapevine and wine: study of a Tempranillo clone with a dark-blue berry colour

Grapevine vegetative multiplication allows the accumulation of spontaneous mutations and increase intra-cultivar genetic diversity that can be exploited to maintain grape wine quality

Colloids in red wines: new insights from recent research

Despite their significant impact on wine quality and stability, colloids in red wine remain relatively under-researched. A series of studies, developed in the context of the d-wines project, aimed to provide a comprehensive understanding of the structure, composition, and formation mechanisms of red wine colloids by studying monovarietal wines from 10 of the most significant Italian red grape varieties. Starting from the idea that proteins, polysaccharides, and tannins should be involved in colloid formation, 110 monovarietal red wines were analysed for these components, revealing high inter- and intra-varietal diversity [1].

Dynamics of soil and canopy temperature: a conceptual approach for Alentejo vineyards

Climate change imposes increasing restrictions and risks to Mediterranean viticulture. Extreme heat and drought stress events are becoming more frequent which puts in risk sustainability of Mediterranean viticulture. Moreover row crops e.g. grapevine for wine, are increasingly prone to the impact of more intense/longer exposure time to heat stress. The amplified effects of soil surface energy reflectance and conductance on soil-atmosphere heat fluxes can be harmful for leaf and berry physiology.

Digitising the vineyard: developing new technologies for viticulture in Australia 

New and developing technologies, that provide sensors and the software systems for using and interpreting them, are becoming pervasive through our lives and society. From smart phones to cars to farm machinery, all contain a range of sensors that are monitored automatically with intelligent software, providing us with the information we need, when we need it. This technological revolution has the potential to monitor all aspects of vineyard activity, assisting growers to make the management choices they need to achieve the outcomes they want. For example, a future vineyard may possess automated imaging that generates a three dimensional model of the vine canopy, highlighting differences from the desired structure and how to use canopy management to improve fruit composition, or generates maps with yield estimates and measurements of berry composition throughout the growing season.

INFLUENCE OF THE THICKNESS OF OAK ALTERNATIVES ON THE COMPOSITION AND QUALITY OF RED WINES

Aging red wines in oak barrels is an expensive and laborious process that can only be applied to wines with a certain added value. For this reason, the use of oak alternatives coupled with micro-oxygenation has progressively increased over recent years, because it can reproduce the processes taking place in the barrels more economically and quickly [1]. Several studies have explored how oak alternatives [2-5] can contribute to wine composition and quality but little is known about the influence of their thickness.