Macrowine 2021
IVES 9 IVES Conference Series 9 Data fusion approaches for sensory and multimodal chemistry data applied to storage conditions

Data fusion approaches for sensory and multimodal chemistry data applied to storage conditions


AIM: The need to combine multimodal data for complex samples is due to the different information captured in each of the techniques (modes). The aim of the study was to provide a critical evaluation of two approaches to fusing multi-modal chemistry and sensory data, namely, multiblock multiple factor analysis (MFA) and concatenation using principal component analysis (PCA).

METHODS: Wines were submitted to sensory analysis using Pivot©Profile (Thuillier et al. 2015) and chemical analysis in four modes: antioxidant measurements (AM), volatile compounds composition (VCC), ultraviolet-visible light (UV-Vis) spectrophotometry (Mafata et al. 2019), and infra-red (IR) spectroscopy. Correspondence analysis (CA), principal component analysis (PCA), and multiple factor analysis (MFA) were used to model data under the data analysis steps involving data cleaning, visualizing, modelling and evaluation (Pagès 2004). Percentage explained variation (%EV) and regression vector (RV) coefficients were used as comparative evaluation parameters between data models (Abdi 2007).

RESULTS: IR spectral data were used as an example of the assessment of the need for data cleaning/pre-processing. Similarities in MFA and high RV coefficients indicated that the raw (unprocessed data) could be used for the data fusion. High RV coefficients and MFA proximity between the antioxidants and UV-Vis measurements indicated an overlap between the type of information contained in the two. The differences between the information captured in each of the five modes can be seen in the different measurements, from the knowledge of the theory/ ontext behind the technique, and statistically. Statistically, the differences are measured and visualised by a lack of overlap (redundancy) in the MFA and its accompanying cluster analysis. 


The %EV when performing PCA are higher than with MFA, a consequence of fusing big data sets from various modes and not necessarily a direct result of the relationships among the data sets. Therefore, the %EV was ruled out as a reliable measure of the differences in informational value between MFA and PCA fusion strategies. RV coefficients, of which MFA were highest, were the best measurements of the performance of data fusion approaches. MFA demonstrated greater appropriateness as a statistical tool for fusing multi-modal data.


Publication date: September 13, 2021

Issue: Macrowine 2021

Type: Article


Jeanne Brand

South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, South Africa,Mpho, MAFATA, South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, South Africa  Martin, KIDD, Centre for Statistical Consultation, Stellenbosch University, South Africa Andrei, MEDVEDOVICI, Faculty of Chemistry, University of Bucharest, Romania Astrid, BUICA, South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, South Africa

Contact the author


data fusion; sensory evaluation; chemical composition; white wines; storage


Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.