Terroir 2006 banner
IVES 9 IVES Conference Series 9 Soil or geology? And what’s the difference? Some observations from the New World

Soil or geology? And what’s the difference? Some observations from the New World

Abstract

Observational historical geology seeks to establish the evolutionary history of the surface of Earth. This approach is applicable not only to bedrock, but to the soft material that lies at the surface, the stuff called soil by most people. The geologic perspective provides a view of this material that is quite different from that of soil science, at least as practiced by many in America. Examples from the Walla Walla Valley of Washington and Oregon, and from the Napa Valley, illustrate the differences between these approaches. In Napa, correlation of grape character and viticultural realities with geologic observations suggests some underlying shared factor, perhaps drainage and water accessibility, but possibly influences of substrate temperature or microbiology. In addition, the geologic approach has proven useful in designing drainage and irrigation systems.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Jonathan SWINCHATT

EarthVision, Inc., 52 Cook Hill rd., Cheshire, CT. 06410, USA

Contact the author

Keywords

geology, soil, Napa, Walla Walla, terroir

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Multispectral fluorescence sensitivity to acidic and polyphenolic changes in Chardonnay wines – The case study of malolactic fermentation

In this study, stationary and time-resolved fluorescence signatures were statistically and chemometrically analyzed among three typologies of Chardonnay wines with the objectives to evaluate their sensitivity to acidic and polyphenolic changes.

Using δ13C and hydroscapes as a tool for discriminating cultivar specific drought response

Measurement of carbon isotope discrimination in berry juice sugars at maturity (δ13C) provides an integrated assessment of water use efficiency (WUE) during the period of berry ripening, and when collected over multiple seasons can be used as an indication of drought stress response. Berry juice δ13C measurements were carried out on 48 different varieties planted in a common garden experiment in Bordeaux, France from 2014 through 2021 and were paired with midday and predawn leaf water potential measurements on the same vines in a subset of six varieties. The aim was to discriminate a large panel of varieties based on their stomatal behaviour and potentially identify hydraulic traits characterizing drought tolerance by comparing δ13C and hydroscapes (the visualisation of plant stomatal behaviour as a response to predawn water potential). Cluster analysis found that δ13C values are likely affected by the differing phenology of each variety, resulting in berry ripening of different varieties taking place under different stress conditions within the same year. We accounted for these phenological differences and found that cluster analysis based on specific δ13C metrics created a classification of varieties that corresponds well to our current empirical understanding of their relative drought tolerances. In addition, we analysed the water potential regulation of the subset of six varieties (using the hydroscape approach) and found that it was well correlated with some δ13C metrics. Surprisingly, a variety’s water potential regulation (specifically its minimum critical leaf water potential under water deficit) was strongly correlated to δ13C values under well-watered conditions, suggesting that base WUE may have a stronger impact on drought tolerance than WUE under water deficit. These results give strong insights on the innate WUE of a very large panel of varieties and suggest that studies of drought tolerance should include traits expressed under non-limiting conditions.

Oenological potential of wines and agronomical characterisation of grapes from five white resistant Italian varieties at Serra Gaúcha, Southern Brazil

Rio grande do sul is the main grape producing state in Brazil, with the largest wine-growing area, responsible by 90% of the national production of wines and grape juices. Serra Gaúcha is the main vitivinicultural region, where around 15% of the area is destined to produce wines from vitis vinifera L. grapes. This region presents high rainfall during the grape maturation cycle, a factor that leads to great risk of attacks by fungal pathogens. the use of resistant varieties can reduce the cost and quantity of spraying, improving wine quality, focusing on a sustainable vitiviniculture.

Vineyard microclimate alterations induced by black mulch through transcriptome reshaped the flavoromics of Cabernet Sauvignon

To alter the vineyard microclimate and produce quality wine under a semi-arid climate, black geotextile inter-row mulch (M) was applied for two vintages (2016-2017). The grapes were sampled at three growing stages to conduct the untargeted metabolome and transcriptome analysis. The upregulated genes related to photosynthesis and heat shock proteins confirmed that M weakened the total light exposure and grapes suffered severe heat stress, resulting in lower sugar and higher acids at harvest. The integration of metabolome and transcriptome analysis identified the key genes responsible for the enhancements in phenylalanine, glutamine, ornithine, arginine, and C6 alcohol concentrations, and the downward trend in ε-viniferin, anthocyanins, flavonols, terpenes and norisoprenoids concentrations in M grapes.

New technologies to characterize spatial variability in viticulture

Measurements of parameters spatialy positionned, with on line sensors mounted on classical machinery or airborne imagery is no more a problem in viticulture. In a short time, high resolution data dedicated to the assessment of the vine characteristics, the soil, the harvest, etc. will become a reality.