Terroir 2006 banner
IVES 9 IVES Conference Series 9 Characterization of spatial and temporal soil water status in vineyard by DC resistivity measurements

Characterization of spatial and temporal soil water status in vineyard by DC resistivity measurements

Abstract

We performed a DC resistivity monitoring experiment during eight months in 2003. Low, medium and high resolution measurements have been carried out at various locations of a vineyard. General apparent resistivity mapping evidences the spatial variations of the summer drying of the subsurface.
Three experiments have been conducted in the studied area :
– parallel 2-D dipole-dipole sections (96 electrodes at 1 meter spacing). The sections are orientated in the long direction of the studied area and located between the vine rows. After inversion, these sections allow to describe the vertical variations of the electrical resistivity and help to specify the 3D geological sketch of the studied area down to three meters.
– high resolution « borehole like » tomographic sections obtained with a custom electrode set. Three PVC rods, two of them vertically placed and one horizontal between the two vertical carry 48 stainless steel electrodes, 0.13 m spaced. This allows to investigate a 4 squared meters section with electrodes on three sides of it. Two of these devices were placed within the sudied area. Moisture measurements were performed in the investigated section with time domain reflectivity probes. High resolution cross borehole tomography shows moisture variation at the vine stock scale, and short time interval such as the diffusion af a rainfall.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

J.P. GOUTOULY (1), D. ROUSSET (2), H. PERROUD (2) et J.P. GAUDILLÈRE (1)

(1) I.N.R.A.- UMR Œnologie-Ampélologie, Équipe Écophysiologie and Agronomie Viticole,
71, avenue Édouard-Bourlaux B.P.81 33883 Villenave d’Ornon cedex, France
(2) CNRS –UPPA Modélisation et Imagerie en Géosciences, avenue de l’Université 64000 Pau, France

Contact the author

Keywords

Vitis vinifera, tomography, water content, root absorption, variability

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Water relations, growth and yield of grapevines in Portugal’s Douro wine region

The hot and dry climate of the Demarcated Region of Douro (DRD), Portugal, particularly during the summer, induces soil water deficits that influence the growth and development of grapevines.

Exploring the factors affecting spatio‐temporal variation in grapevine powdery mildew

The spatial distribution of powdery mildew is often heterogeneous between neighboring plots, with higher disease pressure in certain places

Terroir effects on wine aromatic metabolomics in the eastern foot of Helan Mountain, Ningxia, China

Aim: The eastern foot of Helan Mountain, Ningxia, China is one of the most important wine production regions in China and grape cultivation has spread in several sub-regions with different soils and cultivars. Large diversity in wine aromas have been observed at Ningxia region but which terroir factors drive those diversity in aromas remain to uncover. This study aims to investigate the impacts of grape varieties and soil chemical properties on wine aromas at Ningxia, in order to characterize the aromatic typicality of Ningxia wines and provide foundation for developing a ‘Protected Designation of Origin’ system. 

Hyperspectral imaging for the appraisal of varietal aroma composition along maturation in intact Vitis vinifera L. Tempranillo Blanco berries

The knowledge of the grape aromatic composition during ripening provides very important information for winegrowers, who may carry out different viticultural practices, or determine the harvest date more accurately. However, there are currently no tools that allow this measurement to be carried out in a non-invasive and rapid way. For this reason, the aim of this work was to design a non-invasive methodology, based on hyperspectral imaging to estimate the aromatic composition and total soluble solids (TSS) of Tempranillo Blanco berries during ripening.

Impact of genotypic variability on grapevine architecture and light interception: A functional-structural modelling approach

Aerial architecture plays a key role in plant functioning as it affects light interception and microclimate. In grapevine, this architecture is primarily shaped by winter pruning and further adjusted through practices such as leaf thinning and topping during the growth cycle.