Terroir 2006 banner
IVES 9 IVES Conference Series 9 Characterization of spatial and temporal soil water status in vineyard by DC resistivity measurements

Characterization of spatial and temporal soil water status in vineyard by DC resistivity measurements

Abstract

We performed a DC resistivity monitoring experiment during eight months in 2003. Low, medium and high resolution measurements have been carried out at various locations of a vineyard. General apparent resistivity mapping evidences the spatial variations of the summer drying of the subsurface.
Three experiments have been conducted in the studied area :
– parallel 2-D dipole-dipole sections (96 electrodes at 1 meter spacing). The sections are orientated in the long direction of the studied area and located between the vine rows. After inversion, these sections allow to describe the vertical variations of the electrical resistivity and help to specify the 3D geological sketch of the studied area down to three meters.
– high resolution « borehole like » tomographic sections obtained with a custom electrode set. Three PVC rods, two of them vertically placed and one horizontal between the two vertical carry 48 stainless steel electrodes, 0.13 m spaced. This allows to investigate a 4 squared meters section with electrodes on three sides of it. Two of these devices were placed within the sudied area. Moisture measurements were performed in the investigated section with time domain reflectivity probes. High resolution cross borehole tomography shows moisture variation at the vine stock scale, and short time interval such as the diffusion af a rainfall.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

J.P. GOUTOULY (1), D. ROUSSET (2), H. PERROUD (2) et J.P. GAUDILLÈRE (1)

(1) I.N.R.A.- UMR Œnologie-Ampélologie, Équipe Écophysiologie and Agronomie Viticole,
71, avenue Édouard-Bourlaux B.P.81 33883 Villenave d’Ornon cedex, France
(2) CNRS –UPPA Modélisation et Imagerie en Géosciences, avenue de l’Université 64000 Pau, France

Contact the author

Keywords

Vitis vinifera, tomography, water content, root absorption, variability

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

SUB-CRITICAL WATER: AN ORIGINAL PROCESS TO EXTRACT ANTIOXIDANTS COMPOUNDS OF WINE LEES

Wine lees are quantitatively the second most important wine by-product after grape stems and marc [1]. In order to recycle, distilleries recovered ethanol and tartaric acid contained in wine lees but yeast biomass is often unused. It has already been demonstrated that this yeast biomass could be upcycled to produce yeast extracts of interest for wine chemical stabilization [2]. In addition, it is well known that lees, during aging, release compounds that preserve wine from oxidation.

EFFECTS OF HYDROXYTYROSOL ON THE CHEMICAL PROFILE AND SENSORY ATTRIBUTES OF A RED TUSCAN WINE

The chemical profile and sensory attributes were studied in Borrigiano IGT Toscana wine (Italy), a blend of Sangiovese 85% and Cabernet Sauvignon 15% grapes harvested in September 2020, where 2-(3,4-dihydroxyphenyl)ethanol (hydroxytyrosol, HT, [1]) was added to a 750-ml wine bottle in 3 different amounts (30, 60, 120 mg) and compared with the control (no HT addition). The study aimed to evaluate whether Polyphenol-HT1®, a high purity HT (>99%) produced by Nova Mentis using biotechnology, could be used as a supplement to sulfites and how it would impact the sensory and chemical profile of this wine [2]. Each sample was prepared in triplicate.

Grapevine gas exchange responses to combined variations of leaf water, nitrogen and carbon status – a case of study of fungi tolerant varieties

In the context of climate change and the need to reduce inputs, optimising photosynthesis and grapevine performance requires a better understanding of the interactions between water status, nitrogen availability, and source-sink relationships.

Grape stems as preservative in Tempranillo wine

SO2 is the most widely used preservative in the wine industry. However, there are several drawbacks related with the use of SO2 in wine such as its toxicity and the unpleasant odor in case of excess.

Ten grapevine rootstocks: effects on vegetative development, production and grape quality of cv. Mencia in the d.o. Bierzo (Spain)

Grapevine rootstock is basic to achieve good adaptation of the vine to ground and environment.