Terroir 2006 banner
IVES 9 IVES Conference Series 9 Characterization of spatial and temporal soil water status in vineyard by DC resistivity measurements

Characterization of spatial and temporal soil water status in vineyard by DC resistivity measurements

Abstract

We performed a DC resistivity monitoring experiment during eight months in 2003. Low, medium and high resolution measurements have been carried out at various locations of a vineyard. General apparent resistivity mapping evidences the spatial variations of the summer drying of the subsurface.
Three experiments have been conducted in the studied area :
– parallel 2-D dipole-dipole sections (96 electrodes at 1 meter spacing). The sections are orientated in the long direction of the studied area and located between the vine rows. After inversion, these sections allow to describe the vertical variations of the electrical resistivity and help to specify the 3D geological sketch of the studied area down to three meters.
– high resolution « borehole like » tomographic sections obtained with a custom electrode set. Three PVC rods, two of them vertically placed and one horizontal between the two vertical carry 48 stainless steel electrodes, 0.13 m spaced. This allows to investigate a 4 squared meters section with electrodes on three sides of it. Two of these devices were placed within the sudied area. Moisture measurements were performed in the investigated section with time domain reflectivity probes. High resolution cross borehole tomography shows moisture variation at the vine stock scale, and short time interval such as the diffusion af a rainfall.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

J.P. GOUTOULY (1), D. ROUSSET (2), H. PERROUD (2) et J.P. GAUDILLÈRE (1)

(1) I.N.R.A.- UMR Œnologie-Ampélologie, Équipe Écophysiologie and Agronomie Viticole,
71, avenue Édouard-Bourlaux B.P.81 33883 Villenave d’Ornon cedex, France
(2) CNRS –UPPA Modélisation et Imagerie en Géosciences, avenue de l’Université 64000 Pau, France

Contact the author

Keywords

Vitis vinifera, tomography, water content, root absorption, variability

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Characterization of winegrape berries’ composition on sorting tables using hyperspectral imaging and AI

Comprehensive evaluation of grape composition at winery receiving areas often requires multiple measurements to ensure representativeness, as well as the use of analytical techniques that are time-consuming and involve sample preparation.

Wines empirical perception and growers management practices in the Anjou Villages Brissac vineyard (France)

The concept of viticultural terroir includes soil, sub-soil, and climatic factors but also many management viticultural and oenological practices which are chosen according to know-how of the winegrowers.

Nitrogen uptake, translocation and YAN in berries upon water deficit in grapevines with contrasting stomatal sensitivity

Nitrogen (N2) is critical in grape berries, especially in organic wine making. After intake, N2 follows various metabolic and allocation routes and, from veraison, partly reallocates into berries. Water deficit affects the N2 nutrition due to a poor diffusion in soil solution and vascular mobilisation. Also, affects photosynthesis and the energy needed for metabolism, whose extent would depend on the stomatal sensitivity of the plant. We have assessed the effect of a moderate water deficit from pea size, in 3 years old field grown potted plants of Chardonnay (CH) and Cabernet Sauvignon (CS), differing in stomatal sensitivity, on the N2 status of plant parts. Water deficit reduced photosynthesis, leaf area and fresh and dry plant mass along the season, but up to a higher extent in CS.

The opportunities offered by the climate change

Based on the results of experiments since 2000 at the Institut Agro Montpellier and at INRAE – Pech Rouge, and on the international experience acquired during scientific missions, a global reflection on the opportunities offered by climate change is proposed.

High resolution climate spatial analysis of European winegrowing regions

Climate strongly affects the geographical distribution of grape varieties, grapevine cultivation techniques and wine organoleptic properties.