Terroir 2006 banner
IVES 9 IVES Conference Series 9 Complementarity of measurements of electric resistivity of soils and ΔC13 of must in studies and valorization of wine terroirs

Complementarity of measurements of electric resistivity of soils and ΔC13 of must in studies and valorization of wine terroirs

Abstract

The correlations between vine water deficit cumulated over the ripening period of grapes, assessed by ΔC13 in must sugar, and the main analytic variables of grapes are significant. As a result ΔC13 is a useful tool in zoning homogeneous areas according to their technological qualities when harvesting. There is no significant correlation between ΔC13 in must sugar and soil electric resistivity in the same zone. Thus it is impossible to combine a few measurements of ΔC13 and a zoning of electric resistivity to distinguish areas of which the aptitudes are different. In the event of little water deficit (ΔC13<-25,5‰), a pedological study based on zoning by means of electric resistivity is a complementary tool of zoning according to water uptake conditions, since harvest quality varies a lot with the texture of the sub-soil and its geophysic behaviour.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Guillaume DESCHEPPER (1), Xavier CASSASSOLLES (2), Michel DABAS (2) and David PERNET(1)

(1) SOVIVINS, Centre Montesquieu, Allée Jean Rostand, 33650 Martillac, France
(2) GEOCARTA, 16 rue du Sentier, 75002 Paris, France

Contact the author

Keywords

geophysics, electric resistivity, ΔC13, water deficit, zoning, soil, terroir

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Impact of genotypic variability on grapevine architecture and light interception: A functional-structural modelling approach

Aerial architecture plays a key role in plant functioning as it affects light interception and microclimate. In grapevine, this architecture is primarily shaped by winter pruning and further adjusted through practices such as leaf thinning and topping during the growth cycle.

Improved vineyard sampling efficiency using aerial NDVI

Random sampling is often considered to be the best protocol for fruit sampling because it is assumed to produce a sample that best represents the vineyard population.

Diversity of arbuscular mycorrhizal fungi on grapevine roots across an edaphoclimatic gradient

Challenges associated with climate change, such as soil erosion and drought, have impacted viticulture across wine regions globally in recent decades. As winegrowers struggle to maintain yield and quality standards under these conditions, methods to adapt to and mitigate the impacts of climate change have become more prevalent. One potential mitigation strategy is to enhance symbiotic interaction of grapevine roots with arbuscular mycorrhizal fungi (AMF).

Controlling Wine Oxidation: Effects of pH on Key Reaction Rates

Acidity is often touted as a predictor of wine ageability, though surprisingly few studies have systematically investigated the chemical basis for this claim.

De novo Vitis champinii whole genome assembly allows rootstock-specific identification of potential candidate genes for drought and salt tolerance

Vitis champinii cultivars Ramsey and Dog-ridge are main choices for rootstocks to adapt viticulture in semi-arid and arid regions thanks to their distinctive tolerance to drought and salinity. However, genetic studies on non-vinifera rootstocks have heavily relied on the grapevine (Vitis vinifera) reference genome, which difficulted the assessment of the genetic variation between rootstock species and grapevines. In the present study, this limitation is addressed by introducing a novo phased genome assembly and annotation of Vitis champinii. This new Vitis champinii genome was employed as reference for mapping RNA-seq reads from the same species under drought and salt stresses, and for comparison the same reads were also mapped to the Vitis vinifera PN40024.V4 reference genome. A significant increase in alignment rate was gained when mapping Vitis champinii RNA-seq reads to its own genome, compared to the Vitis vinifera PN40024.V4 reference genome, thus revealing the expression levels of genes specific to Vitis champinii. Moreover, differences in coding sequences were observed in ortholog genes between Vitis champinii and Vitis vinifera, which therefore challenges previous differential expression analyses performed between contrasting Vitis genotypes on the same gene from the Vitis vinifera genome. Genes with possible implications in drought and salt tolerance have been identified across the genome of Vitis champinii, and the same genomic data can potentially guide the discovery of candidate genes specific from Vitis champinii for other traits of interest, therefore becoming a valuable resource for rootstock breeding designs, specially towards increased drought and salinity due to climate change.