Terroir 2006 banner
IVES 9 IVES Conference Series 9 Complementarity of measurements of electric resistivity of soils and ΔC13 of must in studies and valorization of wine terroirs

Complementarity of measurements of electric resistivity of soils and ΔC13 of must in studies and valorization of wine terroirs

Abstract

The correlations between vine water deficit cumulated over the ripening period of grapes, assessed by ΔC13 in must sugar, and the main analytic variables of grapes are significant. As a result ΔC13 is a useful tool in zoning homogeneous areas according to their technological qualities when harvesting. There is no significant correlation between ΔC13 in must sugar and soil electric resistivity in the same zone. Thus it is impossible to combine a few measurements of ΔC13 and a zoning of electric resistivity to distinguish areas of which the aptitudes are different. In the event of little water deficit (ΔC13<-25,5‰), a pedological study based on zoning by means of electric resistivity is a complementary tool of zoning according to water uptake conditions, since harvest quality varies a lot with the texture of the sub-soil and its geophysic behaviour.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Guillaume DESCHEPPER (1), Xavier CASSASSOLLES (2), Michel DABAS (2) and David PERNET(1)

(1) SOVIVINS, Centre Montesquieu, Allée Jean Rostand, 33650 Martillac, France
(2) GEOCARTA, 16 rue du Sentier, 75002 Paris, France

Contact the author

Keywords

geophysics, electric resistivity, ΔC13, water deficit, zoning, soil, terroir

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

First disclosure of eugenol precursors in Vitis genus: analytical development and quantification

The main aim of this work was to develop an analytical method to disclosure the molecular form of eugenol precursor. Indeed eugenol is an important contributor to Armagnac spirits typicity made with Baco blanc.

Application of satellite-derived vegetation indices for frost damage detection in grapevines

Wine grape production is increasingly vulnerable to freeze damage due to warming climates, milder winters, and unpredictable late spring frosts. Traditional methods for assessing frost damage in grapevines which combine fieldwork and meteorological data, are expensive, time-consuming, and labor-intensive. Remote sensing could offer a rapid, inexpensive way to detect frost damage at a regional scale. Remote sensing approaches were used to assess freeze damage in grapevines by evaluating satellite-derived vegetation indices (VIs) to understand the severity and spatial distribution of damage in several New York vineyards immediately after a frost event (May 17th-18th, 2023). PlanetScope 3m satellite images acquired before and after the freeze were used to map damage and measure changes in VIs for vineyards in the Finger Lakes region.

Aroma profile evaluation in whole grape juices

Table grapes (Vitis labrusca and hybrids) are widely cultivated in Brazil [1] due to the climate, their resistance to disease and the way they are consumed and commercialized, either in-natura or for processing, producing whole juices, jams and table wines.

Evolution of grapeseed composition during maturation and characterization of its impact on wine compound using molecular networks

Usually the winemaker consider the grapeberry maturity as an actor of the wine quality. Grape seed are frequently used as a marker to assess the grape maturity. The first aim of this study is to obtain a better understanding of the impact of grape seed maturity on the grape seed and grape berry composition.

Climate change impact study based on grapevine phenology modelling

In this work we present a joint model of calculation the budbreak and full bloom starting dates which considers the heat sums and allows reliable estimations for five white wine grape varieties