Terroir 2006 banner
IVES 9 IVES Conference Series 9 Terroir and precision viticulture: are they compatible?

Terroir and precision viticulture: are they compatible?

Abstract

The concept of terroir or sense of place is almost as old as the wine industry. It is generally used as an all-encompassing term to reflect the effects of the biophysical environment in which grapes and their resultant wines are produced on the character of those wines. Historically, terroir has generally been considered at the regional or property scale. However, the recent development of Precision Viticulture promotes acquisition of a more informed sense of place by providing detailed measures of vineyard productivity, soil attributes and topography at high spatial resolution. Whilst associated research into vineyard variability lends weight to the concept of terroir in terms of biophysical impacts on grape and wine production, it also raises questions as to the scale at which terroir is a useful concept. These issues are explored using examples from the Padthaway and Sunraysia grapegrowing regions of Australia.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

R.G.V. BRAMLEY (1) and R.P. HAMILTON (2)

(1) CSIRO Sustainable Ecosystems, Food Futures Flagship and Cooperative Research Centre for Viticulture PMB n°2, Glen Osmond, SA 5064, Australia
(2) Foster’s Wine Estates, PO Box 96, Magill, SA 5072, Australia

Contact the author

Keywords

Vineyard variability, spatial scale, Australia

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Winery by-products as potential bioresources for green valorization and sustainable biotechnological applications

The wine and distillery industries are among the most prominent sectors in EU agriculture, where 75% of grape production is dedicated to winemaking.

Les préparations biodynamiques 500 et 501 ont elles un effet sur la vigne ?

Dans le cadre de TerclimPro 2025, Markus Rienth a présenté un article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/8396

Mechanization of pre-flowering leaf removal under the temperate-climate conditions of Switzerland

Grapevine leaf removal (LR) in the cluster area is typically done between fruit set and cluster closure to create an unfavorable microclimate for fungal diseases, such as Botrytis cinerea and powdery mildew. Grape growers are now turning their attention to pre-flowering LR, which has additional benefits under certain conditions. When applied before flowering, LR strongly affects fruit set and thus the number of berries per cluster. It is therefore a good yield control tool, replacing time-consuming manual cluster thinning (Poni et al. 2006). It also improves berry structure, that is, skin thickness, skin-to-pulp ratio, and berry composition (total soluble solids, titratable acidity, and polyphenols) (Palliotti et al. 2012; Komm and Moyer 2015). By exacerbating competition for assimilates between reproductive and vegetative organs, pre-flowering LR also poses some risks. Excessive yield loss at the same year’s harvest due to a too low fruit set rate is the main concern: intensive pre-flowering LR (100% of the cluster area) can induce up to 50% yield loss in potted vines (Poni et al. 2005). Other parameters, such as cool climatic conditions during flowering, also affect fruit set rate and make it difficult to predict potential yield at harvest. Repeated and overly intensive preflowering LR can have repercussions over time and induce a decline in bud fruiting and plant vigor (Risco et al. 2014).

The anthocyanin profile of galician endangered varieties. A tool for varietal selection

AIM: The current loss of genetic grapevine diversity is mainly due to the reduced number of varieties used for making wine. A way of preserved endangered varieties is the establishment of germplasm banks.

Characterization of phenolics and VOCs in wines obtained from Malbec vineyards of the Uco Valley submitted to high-altitude solar UV-B and water restriction

Characterization of phenolics and VOCs in wines obtained from Malbec vineyards of the Uco Valley submitted to high-altitude solar UV-B and water restriction