Terroir 2006 banner
IVES 9 IVES Conference Series 9 Use of satellite in precision viticulture: the Franciacorta experience

Use of satellite in precision viticulture: the Franciacorta experience

Abstract

Today, the concept of precision vine management (or site-specific viticulture) has a great relevance. It is based on the practice of a different management in relation to the different features of the crop site. In this way, all practices should be adapted to the land spatial variability and should be linked to the real needs of vines. Some guiding lines were drawn in order to find systems, based on a remote sensing one, that could lead to an evaluation of vine adaptative responses to different conditions of cultivation, and give some marks on a different management of vineyards. In 2005, some high-resolution relieves were made by satellite (IKONOS) on a surface of about 500 hectare of vineyards located in Franciacorta (Northern Italy). Two different kinds of images were used: a first one coloured in the visible spectrum and another one in the near infra-red. These images were processed by suitable algorhythms and they were related to productive data (from a quantity and quality point of view) taken from 24 Chardonnay vineyards. These vineyards were representative of the different Franciacorta conditions; these fields belonged to different suitability units, which were identified by a zoning study made in 1997. The statistical data processing allowed to find some significant relationships between data provided by satellite and data surveyed from the surface.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Lucio BRANCADORO (1), Osvaldo FAILLA (1), Paolo DOSSO (2) et Flavio SERINA (3)

(1) Dipartimento di Produzione Vegetale, Università degli Studi, via Celoria 2, Milano, Italy
(2) Terradat s.r.l.
(3) Consorzio per la Tutela del Franciacorta

Contact the author

Keywords

precision viticulture, remote sensing, zoning

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Hyperspectral imaging and machine learning for monitoring grapevine physiology

Rootstocks are gaining importance in viticulture as a strategy to combat abiotic challenges, as well as enhancing scion physiology and attributes. Therefore, understanding how the rootstock affects photosynthesis is insightful for genetic improvement of either genotype in the grafted grapevines. Photosynthetic parameters such as maximum rate of carboxylation of RuBP (Vcmax) and the maximum rate of electron transport driving RuBP regeneration (Jmax) have been identified as ideal targets for breeding and genetic studies. However, techniques used to directly measure these photosynthetic parameters are limited to the single leaf level and are time-consuming measurements.

Evolution of the appellation of origin concept in the vineyards of Australia

Australia is the seventh largest producer of wine and crushed 1.42 million tonnes of wine grapes in the 2001 vintage.

Experiments with the use of stems in Pinot noir winemaking

Vinification trials were carried out between 2018 and 2021 in the experimental winery at Laimburg Research Centre, Alto Adige, to test the effect of grape stem inclusion during fermentation of Pinot Noir.

From vineyard to bottle. Rationalizing grape compositional drivers of the expression of valpolicella aroma ‘terroir’

AIM: Valpolicella is a renowned Italian wine-producing region (Paronetto, 1981). Wines produced in its different sub-regions are anecdotally believed to be aromatically different, although there is no systematic study addressing the chemical bases of such diversity

An Ag+ SPE method combined with Deans’ switch heart-cutting MDGC–MS/Olfactometry approach for identifying unknown volatile thiols in wine

Wine aroma is a crucial quality criterion. A multitude of volatile compounds have been identified and correlated to the aroma attributes perceived in wine.