Terroir 2006 banner
IVES 9 IVES Conference Series 9 Use of satellite in precision viticulture: the Franciacorta experience

Use of satellite in precision viticulture: the Franciacorta experience

Abstract

Today, the concept of precision vine management (or site-specific viticulture) has a great relevance. It is based on the practice of a different management in relation to the different features of the crop site. In this way, all practices should be adapted to the land spatial variability and should be linked to the real needs of vines. Some guiding lines were drawn in order to find systems, based on a remote sensing one, that could lead to an evaluation of vine adaptative responses to different conditions of cultivation, and give some marks on a different management of vineyards. In 2005, some high-resolution relieves were made by satellite (IKONOS) on a surface of about 500 hectare of vineyards located in Franciacorta (Northern Italy). Two different kinds of images were used: a first one coloured in the visible spectrum and another one in the near infra-red. These images were processed by suitable algorhythms and they were related to productive data (from a quantity and quality point of view) taken from 24 Chardonnay vineyards. These vineyards were representative of the different Franciacorta conditions; these fields belonged to different suitability units, which were identified by a zoning study made in 1997. The statistical data processing allowed to find some significant relationships between data provided by satellite and data surveyed from the surface.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Lucio BRANCADORO (1), Osvaldo FAILLA (1), Paolo DOSSO (2) et Flavio SERINA (3)

(1) Dipartimento di Produzione Vegetale, Università degli Studi, via Celoria 2, Milano, Italy
(2) Terradat s.r.l.
(3) Consorzio per la Tutela del Franciacorta

Contact the author

Keywords

precision viticulture, remote sensing, zoning

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Spiders in vineyards show varying effects of inter-row management and the surrounding landscape

In vineyards, management and the surrounding landscape can have different effects on spiders. In temperate regions management (organic vs. conventional) may have less strong effects than for other crops.

EFFECTS OF LEAF REMOVAL AT DIFFERENT BUNCHES PHENOLOGICAL STAGES ON FREE AND GLYCOCONJUGATE AROMAS OF SKINS AND PULPS OF TWO ITALIAN RED GRAPES

Canopy-management practices are applied in viticulture to improve berries composition and quality, having a great impact on primary and secondary grape metabolism. Among these techniques, cluster zone leaf removal (defoliation) is widely used to manage air circulation, temperature and light radiation of grape bunches and close environment. Since volatiles are quantitatively and qualitatively influenced by the degree of fruit ripeness, the level of solar exposure, and the thermal environment in which grapes ripen, leaf removal has been shown to affect volatile composition of grape berries [1].

Enological potential of autochtonous grape cultivars from Castilla y León (Spain) to elaborate sparkling wines: polyphenolic and biogenic amines and amino acid composition of base wines

In white wines, Verdejo wine stands out because of its high content in total amino acids. The total content in biogenic amines was low in all wines analyzed and putrescine was the predominant biogenic amine.

Nuove soluzioni e strumenti per l’agricoltura e la viticoltura di precisione

GEOSPHERA s. r. l. e TERR.A.IN. CNS, forti della grande esperienza dei loro collaboratori nell’ambito delle scienze naturali, della geologia, della geofisica e dell’informatica, garantiscono risposte innovative alle problematiche della moderna agricoltura rivolgendosi direttamente ai viticoltori, ai commercianti vinicoli ed ai liberi professionisti.

Comparing different vineyard sampling densities and patterns for spatial interpolation of intrinsic water use efficiency

The need to rationalize agricultural inputs has recently increased interest in assessing vineyard variability in order to implement variable rate input applications, so-called ‘precision viticulture’. In many viticultural areas globally, precision viticulture is already widely used such as for selective harvesting and variable rate application (VRA) of inputs such as irrigation and/or fertilizer. Robust VRA relies on having a geostatistically accurate map (of one or more vineyard attributes) requiring high sampling densities, which can be cost- and time-prohibitive to obtain. Previous work on spatial interpolation using kriging have upscaled ground-based measurements, but such upscaling strategies are applicable only when vineyard conditions are spatially continuous and satisfies the assumption of second-order stationary processes. Alternatively, mixed models that combine kriging and auxiliary information, such as the regression kriging (RK) method, are more instructive for spatial predictions. In order to improve prediction accuracies, it is therefore necessary to incorporate additional information to achieve accurate spatial patterns with low error.