Terroir 2006 banner
IVES 9 IVES Conference Series 9 Recommended grapevine varieties for the vineyards zone Vrsac and trend meteorological elements

Recommended grapevine varieties for the vineyards zone Vrsac and trend meteorological elements

Abstract

The aim of this paper was to analyze trends of the meteorological elements and determine suitability of growing grapevine cultivar in viticulture region. Trend analyses were done, based on the data for South-Banat sub-region, an important resource for the production of grapes and wines in Pannonia plain (Vršac:H = 83 m, φ=45 09 N, λ=21 19 E). Trend of significance for the 95% level of confidence, for mean air temperature and sunshine duration, was obtained for the May-June period. For those elements, trend was increasing us well us for the precipitation in September.
Vineyard personnel are beginning to change list of some cultivars and develop new techniques for producing better fruit. These technologies such as tailoring vine care on a row-by-row and even plant–by-plant basis may prove of value in adapting vineyard to climate change. Based on trend analysis and obtained results, correction of the list of the recommended wine and table grapevine cultivars for this vinegrowing region was done. We are recommending the following mid-early season grapevine cultivars: Pinot Nero R-4, Gammy 222, Pinot gris R-6 and VCR-5, Pinot Blanco VCR 1, Chardonnay VCR 4, Riesling Renaro R2, Riesling 21, Riesling 198, Riesling Italico SK 61, SK 54 and SK 13, Sauvignon Blanc R1, Traminer Gewurz R-1, VCR-6. From the list of the table cultivars we are recommending Muscat of Banat, Muscat of Hamburg clone 192, 197, 198 and Becman.
From the new grapevine cultivars, created at the Faculty Agriculture in Zemun, Department for Viticulture, we are recommending cv. Godominka (selfpolination of Dymiat) Negotinka (Pinot Noir x Zacinak). By choosing grapevine rootstocks, priority has the fooling rootstocks Teleki 5C G-52, SO4 G-47 and Kober 5BB G-114.

DOI:

Publication date: January 11, 2022

Issue: Terroir 2006

Type: Article

Authors

Branislava SIVČEV, Nevena PETROVIĆ and Ivana TOŠIĆ

University of Belgrade, Faculty of Agriculture, Nemanjina 6, 11081 Zemun, Serbia

Contact the author

Keywords

climatic changes, grapevine cultivar list, trends

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Grapevine gas exchange responses to combined variations of leaf water, nitrogen and carbon status – a case of study of fungi tolerant varieties

In the context of climate change and the need to reduce inputs, optimising photosynthesis and grapevine performance requires a better understanding of the interactions between water status, nitrogen availability, and source-sink relationships.

Comportement hydrique des sols viticoles et leur influence sur le terroir

L’étude des relations Terroir – Vigne – Raisin est complexe. La recherche et le développement des facteurs qualitatifs qui influencent le caractère des vins sont multiples. Divers travaux mettent en évidence la relation entre l’alimentation en eau de la plante, son développement végétatif et les caractéristiques de ses raisins.

Analyses of a long-term soil temperature record for the prediction of climate change induced soil carbon changes and greenhouse gas emissions in vineyards

The evaluation of the current and future impact of climate change on viticulture requires an integrated view on a complex interacting system within the soil-plant-atmospheric continuum under continuous change. Aside of the globally observed increase in temperature in almost all viticulture regions for at least four decades, we observe several clear trends at the regional level in the ratio of precipitation to potential evapotranspiration. Additionally the recently published 6th assessment report of the ipcc (the physical science basis) shows case-dependent further expected shifts in climate patterns which will have substantial impacts on the way we will conduct viticulture in the decades to come.

Effect of intra‐vineyard ripeness variation on the efficiency of commercial enzymes on berry cell wall deconstruction under winemaking conditions

Intra-vineyard variation grape berry ripening occurs within bunches, between bunches on the same vine and between vines. Although it is assumed that such variation also occurs at the grape berry cell wall level, no study to data has investigated in any depth. Here we have used a intra-vineyard panel design to investigate pooled bunches from six vines (per panel) in the context of a winemaking scenario. The dissected vineyard was harvested by separate panels, where each panel was then subjected to a standard winemaking procedure with or without the addition of three different enzyme preparations for maceration.

Novel protocols for variable rate vineyard management

The advent of precision viticulture (PV) has allowed to address problems related to spatial and temporal variability at the within-field scale. Nowadays, several remote and proximal sensing solutions allow description of the existing variability at different temporal and ground resolution through extremely robust soil, vigor, yield, and grape quality maps. In parallel, numerous studies have described grapevine performances within the homogeneous zones and identified soil as main driver of variability. There is a broad consensus that different vigor zones within the same plot may show differential canopy growth, yield and fruit composition, depicting diverse enological potentials and cultural needs.