Terroir 2006 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2006 9 Integrated approach in terroir studies (Terroir 2006) 9 Soils, climate, nutritive status and production of cv “Palomino fino” in the superior quality area of the Jerez-Xérès-Sherry zone

Soils, climate, nutritive status and production of cv “Palomino fino” in the superior quality area of the Jerez-Xérès-Sherry zone

Abstract

The Registered Appellation of Origin Mark (RAOM) « Jerez-Xérès-Sherry and Manzanilla Sanlucar de Barrameda » is one of the oldest and more important zone in wine history and production. «Albarizas» unit (white calcareous marls with sea-fossils) is the most representative geological material of the RAOM (75%) and even more in the central-NW area of the RAOM, known as «Jerez Superior» area (Superior Quality Sherry Area). « Albarizas » form undulated hillocks (3-10% slope) and hills (>10% slope), the litologic unit has E-W and S-W direction, and Regosols and Leptosols are the principal soils. Chemical and physical analytical data show the high aptitude for vine culture of these soils. The Superior Quality zone has mean minimum temperatures between 10.3 and 12.5 °C, mean maximum between 22 and 24 oC, and the annual rainfall ranged between 513 to 624 mm. Climatic indexes indicated very good conditions for vine cultivation and high quality wine production. «Palomino Fino» is the main vine cv. both in the RAOM and Superior Quality Sherry area. There were no big differences in the nutritional status of the plants from the plots compared but a decrease of N, P, K and increase of Ca and Mg levels occurred along the reproductive cycle in all parts and classes of leaves. This behaviour was accelerated by leaf age and plant production.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Cristina PARDO (1), Patricia PANEQUE (1), Celia ESPINO (1), Manuel CANTOS (2), Juana LIÑÁN (2) and Antonio TRONCOSO (2)

(1) Departamento de Cristalografía, Mineralogía y Química Agrícola, Universidad de Sevilla, c/ Profesor García González 1, 41012 Seville, Spain
(2) IRNAS-CSIC, P.O. Box 1052, 41080 Seville, Spain

Contact the author

Keywords

Sherry, zoning, « albarizas », soils, nutrition

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Wine shaking during transportation: influence on the analytical and sensory parameters of wine

According to OIV reports, annual world wine consumption fluctuated around 240-245 mln hL over the past decade. The general market globalization has led to the situation when almost half of the consumed wine is exported to other countries. Of this volume, more than 60 mln hL are bottled still and sparkling wines.

The effects of alternative herbicide free cover cropping systems on soil health, vine performance, berry quality and vineyard biodiversity in a climate change scenario in Switzerland

There is an urgent need in viticulture to adopt alternative herbicide-free soil management strategies to mitigate climate change, increase biodiversity, reduce plant protection products and improve soil quality while minimizing detrimental effects on grapevine’s stress tolerance and fruit quality. To propose sustainable solutions, adapted to different pedoclimatic conditions in Switzerland, we developed a multidisciplinary 4-year project, started in 2020. Objectives of the project are to a) evaluate the impact of green covers (spontaneous flora, winter cover crop and permanent ground cover) on environmental and agronomic parameters and b) develop subsequently innovative strategies for different viticultural contexts of Switzerland. The project is divided into 3 phases: 1) diagnosis, 2) on-farm and 3) on-station experiments. Phase 1) consisted in an assessment of 30 commercial vineyards all over Switzerland, where growers already use different herbicide-free soil management strategies. The most promising practices identified in this exploratory phase will be replicated in commercial vineyards across Switzerland (“on-farm”) as well as in a classical randomized block design in an experimental plot (“on-station”). For phase 1), measurements consisted in evaluation of soil status (compaction, structure, roots development), soil microbial diversity (metagenomics), plant diversity and biomass, vine physiology (water stress, vigor, leaf nitrogen) and berry quality (acidity, sugar, available nitrogen). Interestingly, the permanent ground cover resulted in a higher Shannon index thus a higher biodiversity as compared to the other itineraries. The winter cover crop increased vine nitrogen and vigor while deteriorating soil quality, leaving the soil more exposed and compacted likely due to more frequent tillage. The spontaneous flora led to higher berry sugar accumulation, less nitrogen and higher malic acid concentration putatively due to a higher water retention of the flora in a particularly wet vintage. Phases 2) and 3) are required to confirm those tendencies, over the 3 next vintages and different climatic conditions.

Role of PH and its management during vinification on the extraction during maceration and on the evolution during ageing of the phenolic compounda of red wine

Climatic changes cause significant variations in the composition of grapes. for red grapes, a mismatch between phenolic and technological ripening is often observed. There is also often a marked increase in pH and a reduction in fixed acids, which affect the stability and evolution of the wine during ageing. These experiments will provide more information on the role of pH during the winemaking of red wines on the extraction and evolution of phenolic compounds.

Changes in the composition and extractability of flavonoids in Cabernet-Sauvignon: influence of site, climate and vine water status

The purpose of the study was to monitor berry development as a function of site, vine water status and climate in order to improve our understanding of the role played by climate change on secondary metabolites relevant to wine quality.

Bio-protection by one strain of M. Pulcherrima: microbiological and chemical impacts in red wines

In oenology, bio-protection consists in adding bacteria, yeasts or a mixture of microorganisms on grape must before fermentation in order to reduce the use of chemical compounds such as sulphites.