Terroir 2006 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2006 9 Integrated approach in terroir studies (Terroir 2006) 9 Soils, climate, nutritive status and production of cv “Palomino fino” in the superior quality area of the Jerez-Xérès-Sherry zone

Soils, climate, nutritive status and production of cv “Palomino fino” in the superior quality area of the Jerez-Xérès-Sherry zone

Abstract

The Registered Appellation of Origin Mark (RAOM) « Jerez-Xérès-Sherry and Manzanilla Sanlucar de Barrameda » is one of the oldest and more important zone in wine history and production. «Albarizas» unit (white calcareous marls with sea-fossils) is the most representative geological material of the RAOM (75%) and even more in the central-NW area of the RAOM, known as «Jerez Superior» area (Superior Quality Sherry Area). « Albarizas » form undulated hillocks (3-10% slope) and hills (>10% slope), the litologic unit has E-W and S-W direction, and Regosols and Leptosols are the principal soils. Chemical and physical analytical data show the high aptitude for vine culture of these soils. The Superior Quality zone has mean minimum temperatures between 10.3 and 12.5 °C, mean maximum between 22 and 24 oC, and the annual rainfall ranged between 513 to 624 mm. Climatic indexes indicated very good conditions for vine cultivation and high quality wine production. «Palomino Fino» is the main vine cv. both in the RAOM and Superior Quality Sherry area. There were no big differences in the nutritional status of the plants from the plots compared but a decrease of N, P, K and increase of Ca and Mg levels occurred along the reproductive cycle in all parts and classes of leaves. This behaviour was accelerated by leaf age and plant production.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Cristina PARDO (1), Patricia PANEQUE (1), Celia ESPINO (1), Manuel CANTOS (2), Juana LIÑÁN (2) and Antonio TRONCOSO (2)

(1) Departamento de Cristalografía, Mineralogía y Química Agrícola, Universidad de Sevilla, c/ Profesor García González 1, 41012 Seville, Spain
(2) IRNAS-CSIC, P.O. Box 1052, 41080 Seville, Spain

Contact the author

Keywords

Sherry, zoning, « albarizas », soils, nutrition

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Control of grapevine virus diseases in collections and at the stages of propagation in Ukraine

The principles of virological control on different types of grapevine collections and plantations are summarized.

Narrow terraces and alternative training systems for steep sloop viticulture – Douro region

In Douro Region, vineyards are usually planted on hillsides with steep sloops. The models currently used for planting those vineyards are, depending on the initial slope of the hillside, vertical planting or terraces.

Mining microbiome data to identify antagonists of grapevine downy mildew (Plasmopara viticola)

Vineyards are home to a myriad of microorganisms that interact with each other and with the vines. Some microorganisms are plant pathogens, such as the oomycete Plasmopara viticola, causing grapevine downy mildew. Others have a positive effect on vine health, such as disease biocontrol agents. These beneficial plant-microbe and microbe-microbe interactions have gained more attention in recent years because they could represent an alternative to the use of fungicides in viticulture.

The rootstock, the neglected player in the scion transpiration even during the night

Water is the main limiting factor for yield in viticulture. Improving drought adaptation in viticulture will be an increasingly important issue under climate change. Genetic variability of water deficit responses in grapevine partly results from the rootstocks, making them an attractive and relevant mean to achieve adaptation without changing the scion genotype. The objective of this work was to characterize the rootstock effect on the diurnal regulation of scion transpiration. A large panel of 55 commercial genotypes were grafted onto Cabernet Sauvignon. Three biological repetitions per genotype were analyzed. Potted plants were phenotyped on a greenhouse balance platform capable of assessing real-time water use and maintaining a targeted water deficit intensity. After a 10 days well-watered baseline period, an increasing water deficit was applied for 10 days, followed by a stable water deficit stress for 7 days. Pruning weight, root and aerial dry weight and transpiration were recorded and the experiment was repeated during two years. Transpiration efficiency (ratio between aerial biomass and transpiration) was calculated and δ13C was measured in leaves for the baseline and stable water deficit periods. A large genetic variability was observed within the panel. The rootstock had a significant impact on nocturnal transpiration which was also strongly and positively correlated with maximum daytime transpiration. The correlations with growth and water use efficiency related traits will be discussed. Transpiration data were also related with VPD and soil water content demonstrating the influence of environmental conditions on transpiration. These results highlighted the role of the rootstock in modulating water deficit responses and give insights for rootstock breeding programs aimed at identifying drought tolerant rootstocks. It was also helpful to better define the mechanisms on which the drought tolerance in grapevine rootstocks is based on.

Prise en compte et mutations de l’acidité volatile au XXe siècle : les évolutions règlementaires, scientifiques et qualitatives d’un composé du vin au regard de l’histoire

Les composés actifs du vin ont, jusqu’ici, peu fait l’objet d’études sur le temps long. Le développement de l’œnologie, de l’analyse des vins et, de manière concomitante, l’essor des règlementations vinicoles au XXe siècle révèlent pourtant au grand jour le poids de ces composés et leurs évolutions. Dans cette communication, nous souhaitons montrer comment l’acidité volatile des vins,