Terroir 2006 banner
IVES 9 IVES Conference Series 9 Identification of key-odorants in Sauternes Wines

Identification of key-odorants in Sauternes Wines

Abstract

The aim of the present work was to investigate Sauternes wines aromas. The flavor profiles of two wines (vintages 2002 and 2003) were investigated. Key-odorants have been determined by AEDA applied to Amberlite XAD-2 resin extracts. Various complementary techniques were used to identify the compounds (pHMB extraction, chemical synthesis of non-commercial standards, co-injections on two capillary columns, odor description at the sniffing port, GC-MS and GC-PFPD). Among key-odorants, varietal aromas (α-terpineol, linalool) and fermentation alcohols (3-methylbutanol, β-phenylethanol) and esters (ethyl butyrate, ethyl isovalerate, ethyl hexanoate) are relevant. Maturation in oak barrels provides changes in the aroma profile. Guaiacol, eugenol, vanillin, δ-nonalactone and cis-whiskylactone have a FD value ≥27 after maturation. Unreduced carbonyles such as trans-2-nonenal and β-damascenone can also be issued from oak. Polyfunctional thiols emerge as the most interesting odorants. Sotolon, previously described as characteristic of noble rot and indicator of wine oxidation, is underestimated in our XAD-2 extract. A specific extraction procedure has been therefore optimized.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Sabine BAILLY, Vesna JERKOVIC and Sonia COLLIN

Unité de Brasserie et des Industries Alimentaires, Faculté d’ingénierie biologique, agronomique et environnementale, Université catholique de Louvain, Croix du Sud, 2 bte 7, 1348 Louvain-la-Neuve, Belgium

Contact the author

Keywords

Sauternes wines, aroma, AEDA, sotolon

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Back to the roots: how an underutilised biotechnological tool can support research to improve grapevine resilience against biotic stressors in an unpredictable future

Hairy roots (HRs) are a symptom of a natural genetic modification by the soil-borne phytopathogen Rhizobium rhizogenes.

Application of antagonistic Metschnikowia strains against Botrytis cinerea in vineyards 

Less and less chemical plant protection products are approved by the E U. Plant pathogenic fungi become increasingly resistant to the active ingredients that have been around for a long time. Besides, there is a valid demand for effective products that can be applied in organic cultivation.
We examined Metschnikowia strains under laboratory conditions in order to find effective strains against B. cinerea. The antimicrobial mechanism of these yeasts is based on the competition for the ferric ions from the environment. Metschnikowia cells release the pulcherriminic acid which chelates with Fe3+, forming the pigment pulcherrimin.

Effect of Saccharomyces species interaction on alcoholic fermentation behaviour and aromatic profile of Sauvignon blanc wine

Enhancing the sensory profile of wine by the use of different microorganism has been always a challenge in winemaking. The aim of our work was to evaluate the impact of different fermentation schemes by using mixed and pure cultures of different Saccharomyces species to Sauvignon blanc wine chemical composition and sensory profile.

Zeowine: the synergy of zeolite and compost. Effects on vine physiology and grape quality

The trial aims to improve the protection and management of the soil, the well-being of the plant and the quality of production in the wine supply chain organic and biodynamic, using an innovative product “ZEOWINE” resulting from the composting of waste of the wine and zeolite supply chain.

Inactivated yeasts: a case study for the future of precision enology

Yeasts serve as highly versatile tools in oenology. They do more than just perform alcoholic fermentation. Nowadays, yeasts from various species, naturally present in grapes, are selected for specific non-fermentative applications. For example, the use of selected non-saccharomyces at the early stage of winemaking has become a common practice to limit the growth of unwanted microorganisms. When inactivated, yeasts can be fractionated into soluble and insoluble fractions providing a wide range of benefits related to structural components or specific metabolites.