Terroir 2006 banner
IVES 9 IVES Conference Series 9 Identification of key-odorants in Sauternes Wines

Identification of key-odorants in Sauternes Wines

Abstract

The aim of the present work was to investigate Sauternes wines aromas. The flavor profiles of two wines (vintages 2002 and 2003) were investigated. Key-odorants have been determined by AEDA applied to Amberlite XAD-2 resin extracts. Various complementary techniques were used to identify the compounds (pHMB extraction, chemical synthesis of non-commercial standards, co-injections on two capillary columns, odor description at the sniffing port, GC-MS and GC-PFPD). Among key-odorants, varietal aromas (α-terpineol, linalool) and fermentation alcohols (3-methylbutanol, β-phenylethanol) and esters (ethyl butyrate, ethyl isovalerate, ethyl hexanoate) are relevant. Maturation in oak barrels provides changes in the aroma profile. Guaiacol, eugenol, vanillin, δ-nonalactone and cis-whiskylactone have a FD value ≥27 after maturation. Unreduced carbonyles such as trans-2-nonenal and β-damascenone can also be issued from oak. Polyfunctional thiols emerge as the most interesting odorants. Sotolon, previously described as characteristic of noble rot and indicator of wine oxidation, is underestimated in our XAD-2 extract. A specific extraction procedure has been therefore optimized.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Sabine BAILLY, Vesna JERKOVIC and Sonia COLLIN

Unité de Brasserie et des Industries Alimentaires, Faculté d’ingénierie biologique, agronomique et environnementale, Université catholique de Louvain, Croix du Sud, 2 bte 7, 1348 Louvain-la-Neuve, Belgium

Contact the author

Keywords

Sauternes wines, aroma, AEDA, sotolon

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Unraveling vineyard site from vintage contributions: Elemental composition of site-specific Pinot noir wines across multiple vintages

Understanding vineyard site contribution to elemental composition of wines has, historically, been limited due to lack of continuity across multiple vintages, as well as lack of uniformity in scion clone and lack of controlled pilot-scale winemaking conditions.  We recently completed our fifth vintage, and have elemental composition characterizing wines from four vintages (2015–2018)

Estimating bulk stomatal conductance of grapevine canopies

In response to changes in their environment, grapevines regulate transpiration using various physiological mechanisms that alter conductance of water through the soil-plant-atmosphere continuum. Expressed as bulk stomatal conductance at the canopy scale, it varies diurnally in response to changes in vapor pressure deficit and net radiation, and over the season to changes in soil water deficits and hydraulic conductivity of both soil and plant. It is necessary to characterize the response of conductance to these variables to better model how vine transpiration also responds to these variables. Furthermore, to be relevant for vineyard-scale modeling, conductance is best characterized using data collected in a vineyard setting. Applying a crop canopy energy flux model developed by Shuttleworth and Wallace, bulk stomatal conductance was estimated using measurements of individual vine sap flow, temperature and humidity within the vine canopy, and estimates of net radiation absorbed by the vine canopy. These measurements were taken on several vines in a non-irrigated vineyard in Bordeaux France, using equipment that did not interfere with ongoing vineyard operations. An inverted Penman-Monteith equation was then used to calculate bulk stomatal conductance on 15-minute intervals from July to mid-September 2020. Time-series plots show significant diurnal variation and seasonal decreases in conductance, with overall values similar to those in the literature. Global sensitivity analysis using non-parametric regression found transpiration flux and vapor pressure deficit to be the most important input variables to the calculation of bulk stomatal conductance, with absorbed net radiation and bulk boundary layer conductance being much less important. Conversely, bulk stomatal conductance was one of the most important inputs when calculating vine transpiration, further emphasizing the need for characterizing its response to environmental changes for use in vineyard water use modeling.

Application of antagonistic Metschnikowia strains against Botrytis cinerea in vineyards 

Less and less chemical plant protection products are approved by the E U. Plant pathogenic fungi become increasingly resistant to the active ingredients that have been around for a long time. Besides, there is a valid demand for effective products that can be applied in organic cultivation.
We examined Metschnikowia strains under laboratory conditions in order to find effective strains against B. cinerea. The antimicrobial mechanism of these yeasts is based on the competition for the ferric ions from the environment. Metschnikowia cells release the pulcherriminic acid which chelates with Fe3+, forming the pigment pulcherrimin.

Armenia: historical origin of domesticated grapevine

The Armenian highlands are located on the northern border of western asia and stretch up to the caucasus from the north. Throughout human history, country has played an important role in connecting the civilizations of europe and the near east. The recent large-scale study about the dual domestication origin and evolution of grapes approved that in the Armenian highlands human and grapevine stories are interlaced through centuries and roots of grapevine domestication are found deep in the pleistocene, ending 11.5 thousand years ago. Findings of this study confirmed that glacial episodes distinguish wild grapes into eastern and western ecotypes around 200-400 ka.

Correlation between stable isotopic composition of the fungus aspergillus niger and its growth substrate and the extracted chitin

Wine is one of the most consumed and appreciated beverages in the world. Due to the growing attention paid to consumer health, there is a continuous search for sustainable alternatives to common additives (such as sulfur dioxide) used to preserve wine. An example is represented by chitosan, the main derivative of chitin, approved for the treatment of must and wine since 2009 by the “international organization of vine and wine” (OIV/OENO 338a/2009) and by the european commission (EC Reg. No. 606/2009).