Terroir 2006 banner
IVES 9 IVES Conference Series 9 Identification of key-odorants in Sauternes Wines

Identification of key-odorants in Sauternes Wines

Abstract

The aim of the present work was to investigate Sauternes wines aromas. The flavor profiles of two wines (vintages 2002 and 2003) were investigated. Key-odorants have been determined by AEDA applied to Amberlite XAD-2 resin extracts. Various complementary techniques were used to identify the compounds (pHMB extraction, chemical synthesis of non-commercial standards, co-injections on two capillary columns, odor description at the sniffing port, GC-MS and GC-PFPD). Among key-odorants, varietal aromas (α-terpineol, linalool) and fermentation alcohols (3-methylbutanol, β-phenylethanol) and esters (ethyl butyrate, ethyl isovalerate, ethyl hexanoate) are relevant. Maturation in oak barrels provides changes in the aroma profile. Guaiacol, eugenol, vanillin, δ-nonalactone and cis-whiskylactone have a FD value ≥27 after maturation. Unreduced carbonyles such as trans-2-nonenal and β-damascenone can also be issued from oak. Polyfunctional thiols emerge as the most interesting odorants. Sotolon, previously described as characteristic of noble rot and indicator of wine oxidation, is underestimated in our XAD-2 extract. A specific extraction procedure has been therefore optimized.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Sabine BAILLY, Vesna JERKOVIC and Sonia COLLIN

Unité de Brasserie et des Industries Alimentaires, Faculté d’ingénierie biologique, agronomique et environnementale, Université catholique de Louvain, Croix du Sud, 2 bte 7, 1348 Louvain-la-Neuve, Belgium

Contact the author

Keywords

Sauternes wines, aroma, AEDA, sotolon

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

The role of œnology in the enhancement of terroir expression

The reality of terroir is reflected by the typicality that it confers on the wine. The relationship between the origin of wine and its quality did already exist before the appearance of œnological science. Producers and merchants have always tried to improve wine quality in order to satisfy their clients.

IMPACT OF NEW BIO STIMULANTS ON GRAPE SECONDARY METABOLITES UNDER CLIMATE CHANGE CONDITIONS

In a context of climate change and excessive use of agrochemical products, sustainable approaches for environmental and human health such as the use of bio stimulants in viticulture represent a potential option, against abiotic and biotic threats. Bio stimulants are organic compounds, microbes, or a combination of both, that stimulate plant’s vital processes, allowing high yields and good quality products. In vines, may trigger an innate immune response leading to the synthesis of secondary metabolites, key compounds for the organoleptic properties of grapes and wines.

Measurement of trans-membrane and trans-tissue voltages in the Shiraz berry mesocarp

In mid to late ripening, sugar and potassium (K+) accumulation into the berry slows and is eventually completed1. K+ is the most abundant cation in the berry, undertaking important physiological roles.

Using nanopore skim-sequencing to characterise regional epigenetic variability in New Zealand Sauvignon Blanc

Recent advancements in genomic sequencing technologies have enabled more detailed and direct studies of DNA methylation, which can help characterise epigenetic variations in plants. The Grapevine Improvement team at the Bragato Research Institute is studying the use of Oxford Nanopore sequencing to identify epigenetic changes associated with environmental differences among clonally-propagated grapevines.

This study involved sequencing DNA from the same Sauvignon Blanc clone, sourced from diverse New Zealand viticultural regions, using the PromethION platform.

New biological tools to control and secure malolactic fermentation in high pH wines

Originally, the role of the malolactic fermentation (MLF) was simply to improve the microbial stability of wine via biological deacidification. However, there is an accumulation of evidence to support the fact that lactic acid bacteria (LAB) also contribute positively to the taste and aroma of wine. Many different LAB enter into grape juice and wine from the surface of grape berries, cluster stems, vine leaves, soil and winery equipment. Due to the highly selective environment of juices and wine, only a few types of LAB are able to grow.