Terroir 2006 banner
IVES 9 IVES Conference Series 9 Identification of key-odorants in Sauternes Wines

Identification of key-odorants in Sauternes Wines

Abstract

The aim of the present work was to investigate Sauternes wines aromas. The flavor profiles of two wines (vintages 2002 and 2003) were investigated. Key-odorants have been determined by AEDA applied to Amberlite XAD-2 resin extracts. Various complementary techniques were used to identify the compounds (pHMB extraction, chemical synthesis of non-commercial standards, co-injections on two capillary columns, odor description at the sniffing port, GC-MS and GC-PFPD). Among key-odorants, varietal aromas (α-terpineol, linalool) and fermentation alcohols (3-methylbutanol, β-phenylethanol) and esters (ethyl butyrate, ethyl isovalerate, ethyl hexanoate) are relevant. Maturation in oak barrels provides changes in the aroma profile. Guaiacol, eugenol, vanillin, δ-nonalactone and cis-whiskylactone have a FD value ≥27 after maturation. Unreduced carbonyles such as trans-2-nonenal and β-damascenone can also be issued from oak. Polyfunctional thiols emerge as the most interesting odorants. Sotolon, previously described as characteristic of noble rot and indicator of wine oxidation, is underestimated in our XAD-2 extract. A specific extraction procedure has been therefore optimized.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Sabine BAILLY, Vesna JERKOVIC and Sonia COLLIN

Unité de Brasserie et des Industries Alimentaires, Faculté d’ingénierie biologique, agronomique et environnementale, Université catholique de Louvain, Croix du Sud, 2 bte 7, 1348 Louvain-la-Neuve, Belgium

Contact the author

Keywords

Sauternes wines, aroma, AEDA, sotolon

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Influence of climate change conditions (elevated CO2 and temperature) on the grape composition of five tempranillo (Vitis vinifera L.) Somatic variants

The current levels of greenhouse gas emissions are expecting to provoke a change on the environmental conditions which, among others, will include a rise of global mean surface temperature and an increment of atmospheric CO2 levels (IPCC, 2014), known as climate change. The response of grapevine (Vitis vinifera L.), one of the most important crops in Europe, from both a cultural and economic point of view, is not completely understood yet and the studies considering the interaction between factors are scarce. Besides, the potential variety of responses among somatic variants needs to be studied in order to be exploited in the avoidance of undesired traits linked to climate change (Carbonell‐Bejerano et al., 2015).

Application of DEXI PM Vigne sustainability tool to the assessment of alternative vineyard protection strategies

Implementing alternative grapevine systems that incorporate sustainable strategies and innovative farming practices is essential. However, we lack tools for measuring the impact of these new practices on the overall sustainability of vineyards. DEXi PM Vigne (Gary et al., 2015) is a tool developed for ex ante assessment of the sustainability of grapevine cropping systems, from the plot to the farm scale. In the present study, we focused on implementing new strategies of integrated crop protection management with limited pesticide use in vineyards.

A lower rate of grape berry transpiration delays ripening and reduces flavonoid content

Exposing berries to solar radiation improves most berry composition traits. Many of these effects have been linked to photomorphogenic mechanisms and berry temperature.

Tuning the pH during the fermentation has a strong effect on the wine protein composition and the stability of the resulting white wines

Previous results have shown the impact of the pH on the stability of white wine proteins. In a context of global warming that implies increases in ethanol content and pH

Island and coastal vineyards in the context of climate change

Aim: The notion of “terroir” enables the attribution of distinctive characteristics to wines from the same region. Climate change raises issues about viticulture, especially the growth of the vines and even more importantly the economic situation of actual wine-growing regions (Schultz and Jones 2010; Quénol 2014). Several studies have addressed the impacts of climate change on viticulture in