Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 Validation of the viticulture zoning methodology applied to determine the homogenous soil units present on D.O. Ribera de Duero region

Validation of the viticulture zoning methodology applied to determine the homogenous soil units present on D.O. Ribera de Duero region

Abstract

The methodology to viticulture zoning developed and proposed by Gómez-Miguel and Sotés (1992) has been studied in order to validate it. This was the main aim of this work, which shows only partial results because data from more vintages will be collected during the next vintages.
The proposed validation is based on the comparison of quality levels of the viticulture products (grapes) grown in different Homogeneous Soil Units (HSU) but classified as the same level of quality. HSUs classified as optimum in Ribera del Duero Denomination of Origin (D.O.) region were chosen for this validation study. The three more important Optimum Units were selected. They represented around of 50% of the global surface of vineyards on the Ribera del Duero viticulture D.O. zone. Five different vineyards in each Unit were chosen. Trying to select the most similar vineyards to reduce variability factors, other selection criteria applied were grape variety, clone, rootstocks, age, training systems and cultural practices.
Three grape samples were collected around of each selected vineyards at the “Technological maturity” stage of the grapes. Different oenological quality parameters were analysed on the collected grapes. After the statistical treatment of the whole analytical data, obtained from grapes collected during two consecutive vintages, some significant results can be pointed out. Among them, it is interesting to note that, in general, variability due to vintage was stronger than that due to the HSU. In a similar way, variability due to vineyards was also significant, and in general, it was bigger than variability due to Units. Furthermore, the whole data showed similar levels of quality after comparing grapes from each HSU studied.
These results seem to validate the proposed methodology. That is, the methodology is valid to determine HSU which can produce grape of a similar quality, and then it can be applied to the correct or appropriate use of the agriculture medium.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

González-SanJosé ML (1), Gómez-Miguel V (2), Rivero-Pérez MD (1), Mihnea M (1), Velasco-López T (1)

(1) Department of Biotechnology and Food Science. University of Burgos.
Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
(2) Dpto Edafología. Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid,
28040 Madrid, Spain

Contact the author

Keywords

Viticulture zoning methodology, validation, grape, quality

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Soil management as a key factor on vineyard behavior under semiarid conditions: effects on soil biological activity, plant water and nutrient status, and grape yield and quality

Aims: Viticulture practices linked with soil management, as cover crops and deficit irrigation, can help to regulate the vineyard behavior reducing in most cases plant vigor and modifying plant water and nutrient status, and as a consequence, grape yield and quality. Also, these practices can modify the soil biological activity mostly related to microbiome diversity and functionality.

Assyrtiko wines of Santorini produced by different autochthonous yeasts: Differences in aromatic and organoleptic profiles

Different yeasts were isolated from spontaneous fermentation of Assyrtiko grape must in Santorini Island, Greece. Molecular typing revealed the presence of three Saccharomyces cerevisiae strains (S9, S13, S24) and one strain of the yeast species Nakazawaea ishiwadae (N.i). The four isolated strains were further tested in laboratory scale fermentations of Assyrtiko must in pure inoculation cultures and in sequential inoculation (72 hours) of each S. cerevisiae strain with the strain of N. ishiwadae. All fermentation trials were realised in duplicate.

PHOTOCHEMICAL DEGRADATION OF TRYPTOPHAN IN MODEL WINE: IMPACT OF HEAVY METALS AND OXYGEN ON 2-AMINOACETOPHENONE FORMATION

The wine industry worldwide faces more and more challenges due to climate change, such as increased dryness in some areas, water stress, sunburn and early harvesting during hot summer temperatures¹. One of the resulting problems for the wine quality might be a higher prevalence of the untypical aging off-flavor (ATA)². A substance, which Rapp and Versini made responsible for ATA, is the 2-aminoace-tophenone (2-AAP)³. 2-AAP in wine causes a naphthalene, wet towels, wet wool, acacia flower or just a soapy note⁴.

Applicability of spectrofluorometry and voltammetry in combination with machine learning approaches for authentication of DOCa Rioja Tempranillo wines

The main objective of the work was to develop a simple, robust and selective analytical tool that allows predicting the authenticity of Tempranillo wines from DOCa Rioja. The techniques of voltammetry and absorbance-transmission and fluorescence excitation emission matrix (A-TEEM) spectroscopy have been applied in combination with machine learning (ML) algorithms to classify red wines from DOCa Rioja according to region (Alavesa, Alta or Oriental) and category (young, crianza or reserva).

Spatial variability of grape berry maturation program at the molecular level 

The application of sensors in viticulture is a fast and efficient method to monitor grapevine vegetative, yield and quality parameters and determine their spatial intra-vineyard variability. Molecular analysis at the gene expression level can further contribute to the understanding of the observed variability by elucidating how pathways responsible for different grape quality traits behave in zones diverging for one or the other parameter. The intra-vineyard variability of a Cabernet Sauvignon vineyard was evaluated by a standard Normalized Difference Vegetation Index (NDVI) mapping approach, employing UAV platform, accompanied by detailed ground-truthing (e.g. vegetative, yield, and berry ripening compositional parameters) that was applied in 14 spots in the vineyard. Berries from different spots were additionally investigated by microarray gene expression analysis, performed at five time points from fruit set to full ripening.