Terroir 2006 banner
IVES 9 IVES Conference Series 9 The role of œnology in the enhancement of terroir expression

The role of œnology in the enhancement of terroir expression

Abstract

The reality of terroir is reflected by the typicality that it confers on the wine. The relationship between the origin of wine and its quality did already exist before the appearance of œnological science. Producers and merchants have always tried to improve wine quality in order to satisfy their clients. Before being scientific, this approach was empirical. Grands Crus emerged in Bordeaux when wine could be aged thanks to the development of techniques like disinfecting barrels with sulphur candles, racking, topping up and bottling with cork stoppers. Pasteur was the founder of the oenological science. He had a scientific, but also very practical approach. In the 1930’s, the application of the knowledge about pH, oxydo-reduction and colloids to wine production improved stabilisation of wines. The principles of modern red wine vinification and control over malolactic fermentation were first established in Bordeaux Grand Crus in the 1950’s-1960’s, before being internationally adopted. In the 1980 the œnological science progressed in the understanding and the control of alcoholic fermentation. Today, the role of nitrogen, lipids, temperature and oxygen are well understood. Knowledge about yeast genetics helped to select yeasts for various styles of wines. Off flavours in wines are better controlled since the molecules that are involved have been identified. Wine typicality is, among other factors, determined by its aromatic profile. Wines aromas can be different than the aromas in the grapes from which the wine was produced. The understanding of white wine aromas progressed over the last years, but a lot of work has still to be done on red wine aromas. Tannin quality is also a field that is not yet well explained by oenological science. Œnology should not lead to produce uniform « fast wines », but help to produce original and typical wines, for the pleasure of the amateurs and the profitability of wine producing and distributing companies.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Denis DUBOURDIEU

Faculté d’œnologie, Université Victor Ségalen Bordeaux 2, 351, cours de la Libération 33405 Talence, France
Institut des Sciences de la Vigne et du Vin de Bordeaux

Keywords

oenology, terroir, aroma, yeast, typicality

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

An effective approach to mitigating ochratoxin A (OTA) levels in wine with minor impact on wine quality

OTA occurrence in wine is well-documented, with higher levels typically found in red (< 0.01-7.63 μg/l), followed by rose (0.01-2.40 μg/l) and white wine (<0.01-1.72 μg/l). Incidence rates are nOTAble, with studies showing OTA present in 53% of 521 red wines, 69% of 98 rose, and 61% of 301 white wines analysed. In europe, wine is estimated to be the second source of OTA intake after cereals. Since 2006, the maximum allowable limit for OTA in wine is 2 μg/l, according to regulation (ec) no. 1881/2006.

Pratiques de taille et développement des jeunes vignes

Dans le cadre de TerclimPro 2025, Gonzaga Santesteban a présenté l’article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/8465

δ13C : A still underused indicator in precision viticulture  

The first demonstration of the interest of carbon isotope composition of sugars in grapevine, as an integrated indicator of vineyard water status, dates back to 2000 (Gaudillère et al., 1999; Van Leeuwen et al., 2001). Thanks to the isotopic discrimination of Carbon that takes place during plant photosynthesis, under hydric stress conditions, it is possible to accurately estimate the photosynthetic activity. Ever since, δ13C has been widely applied with success to zonation, terroir studies and vine physiology research, but is still not widely used by viticulturists. This is quite astonishing by considering the impact of global warming on viticulture and the need to improve water management, that would justify a widespread use of δ13C.
The lack of private laboratories proposing the analysis, the cost of the technology, as well as the long analytical delays, have been detrimental to its development. Some laboratories tried to overcome the analytical difficulties of isotopic analysis by using fourier transformed infrared spectroscopy, as a fast and cheap alternative to the official OIV method (IRMS). These claimed FTIR models have never been published or peer reviewed and cannot be considered robust. In this work, thanks to the recent acquisition of IRMS technology, new modern and robust applications of δ13C for viticulture are proposed. This includes the use of the analysis to make parcel separations at harvesting, the possibility to increase the precision of hydric stress cartography and the potential cost reduction when compared with Scholander pressure bomb analysis.

A NEW TOOL TO QUANTIFY COMPOUNDS POTENTIALLY INVOLVED IN THE FRUITY AROMA OF RED WINES. DEVELOPMENT AND APPLICATION TO THE STU-DY OF THE FRUITY CHARACTER OF RED WINES MADE FROM VARIOUS GRAPE VARIETIES

A wide range of olfactory descriptors ranging from fresh and jammy fruit notes to cooked and oxidized fruit notes could describe the fruity aroma of red wines [1]. The fruity character of a wine is mainly related to the grape variety selected, to the terroir and the vinification process applied for its conception. In white wines, some volatile compounds confer directly their aroma to the wine while the question of “key” compound is more complex in red wines. According to many studies performed over the past decades, some fruity ethyl esters are directly involved in the fruity perception of red wines while others, present at subthreshold concentrations, participate indirectly to the fruity expression via perceptive interactions [2].

Biomarker-based phenotyping of grapevine (vitis spp.) resistance to plasmopara viticola reveals interactions between pyramided resistance loci

Grape downy mildew, caused by plasmopara viticola, is one of the main diseases affecting viticulture worldwide and its control usually relies on frequent sprays with agrochemicals. Grapevine varieties resistant to p. Viticola represent an effective solution to control downy mildew and reduce the environmental impact of viticulture. Loci of resistance to p. Viticola (Rpv) have been introgressed from wild vitis species and some of them, like Rpv1, Rpv3.1 and Rpv10, are currently the most utilized genetic resources in grape breeding.