Terroir 2006 banner
IVES 9 IVES Conference Series 9 The role of œnology in the enhancement of terroir expression

The role of œnology in the enhancement of terroir expression

Abstract

The reality of terroir is reflected by the typicality that it confers on the wine. The relationship between the origin of wine and its quality did already exist before the appearance of œnological science. Producers and merchants have always tried to improve wine quality in order to satisfy their clients. Before being scientific, this approach was empirical. Grands Crus emerged in Bordeaux when wine could be aged thanks to the development of techniques like disinfecting barrels with sulphur candles, racking, topping up and bottling with cork stoppers. Pasteur was the founder of the oenological science. He had a scientific, but also very practical approach. In the 1930’s, the application of the knowledge about pH, oxydo-reduction and colloids to wine production improved stabilisation of wines. The principles of modern red wine vinification and control over malolactic fermentation were first established in Bordeaux Grand Crus in the 1950’s-1960’s, before being internationally adopted. In the 1980 the œnological science progressed in the understanding and the control of alcoholic fermentation. Today, the role of nitrogen, lipids, temperature and oxygen are well understood. Knowledge about yeast genetics helped to select yeasts for various styles of wines. Off flavours in wines are better controlled since the molecules that are involved have been identified. Wine typicality is, among other factors, determined by its aromatic profile. Wines aromas can be different than the aromas in the grapes from which the wine was produced. The understanding of white wine aromas progressed over the last years, but a lot of work has still to be done on red wine aromas. Tannin quality is also a field that is not yet well explained by oenological science. Œnology should not lead to produce uniform « fast wines », but help to produce original and typical wines, for the pleasure of the amateurs and the profitability of wine producing and distributing companies.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Denis DUBOURDIEU

Faculté d’œnologie, Université Victor Ségalen Bordeaux 2, 351, cours de la Libération 33405 Talence, France
Institut des Sciences de la Vigne et du Vin de Bordeaux

Keywords

oenology, terroir, aroma, yeast, typicality

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Comparative proteomic analysis of wines made from Botrytis cinerea infected and healthy grapes reveal interesting parallels to the gushing phenomenon in sparkling wine

In addition to aroma compounds also protein composition strongly influences the quality of wines. Proteins of wine derive mainly from the plant Vitis vinifera and may be influenced by abiotic stress as well as fermentation conditions or fining. Additionally, fungal infections can affect the protein content as well by introducing fungal proteins or affecting grape protein composition. An infection of the vine with the plant pathogenic fungus Botrytis (B.) cinerea was shown to cause a degradation of proteins in the resulting wine. Moreover, it influences the foaming properties in sparkling wine.

Gambellara zoning: climate and soil effect on the aromatic fresh and dried grape composition and wine aroma

La région de production de la Gambellara et Recioto di Gambellara DOC (variété Garganega), tout en n’intéressant qu’une surface limitée, présente une certaine variabilité de milieu due à la morphologie du territoire (colline et plaine), à l’état actuel des sols et aux variations climatiques entre les différents sites. Pour les années 2001, 2002

Long-term sensorial and compositional effects of copper fining on the wine containing ‘reductive’ and ‘tropical’ volatile sulfur compounds

The aim of this study was to investigate long-term sensorial and compositional effects of copper addition to the white wine naturally high in varietal thiol levels, with added volatile sulfur compounds

HYDROXYTYROSOL PRODUCTION BY DIFFERENT YEAST STRAINS: SACCHAROMYCES AND NON-SACCHAROMYCES AND THE RELATION WITH THE NITROGEN CONSUMPTION

Hydroxytyrosol (HT) is a phenolic compound with extensive bioactive properties. It is present in olives, olive oil and wines. Its occurrence in wines is partly due to yeast synthetise tyrosol from tyrosine by the Ehrlich pathway, which is subsequently hydroxylated to .
The aim of the present work is to study how different yeast strains can influence in the HT production and, how the different nitrogen consumption of each strain can interfere the production of bioactive compounds.

Closure permeability modulates the aroma expression of monovarietal white wines during bottle ageing

Bottle ageing is a critical period for wine quality, as it undergoes various chemical and sensory changes during storage. Ideally, a phase of qualitative ageing, during which wine sensory quality improves, is followed by a decline of quality. Understanding how different oenological variables influence these phases is a key challenge in modern winemaking. Recent studies highlighted the significant role of oxygen in modulating reactions involving volatile and non-volatile components, impacting aroma evolution during bottle aging. Oxygen exposure of wine during bottle ageing is mediated by closure.