Terroir 2006 banner
IVES 9 IVES Conference Series 9 The wine microbial consortium: a real terroir characteristic

The wine microbial consortium: a real terroir characteristic

Abstract

Yeast, bacteria, species and strains play a key role in the winemaking process by producing metabolites which determine the sensorial qualities of wine. Therefore microbial population numeration, species identification and strains discrimination from berry surface at harvest to storage in bottle are fundamental. The microbial diversity and significance of its variation according to vineyard and cellar have not really been thoroughly considered in literature, and is the focus of this work. That should be of great interest because the spontaneous microbial population dynamics associated with a wine producing estate provide information on what might be considered as the method to obtain specific terroir typed wine. The both use of conventional microbiological methods numbering the wine microbial populations and efficient molecular tools of species identification and strains discrimination has demonstrated the microbial differences according to the estate revealing the microbial part in specific terroir characteristic.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Vincent RENOUF, Cécile MIOT-SERTIER and Aline LONVAUD-FUNEL

Laboratoire de Biotechnologie et de Microbiologie Appliquée, Faculté d’oenologie
UMR INRA,Université Bordeaux 2 Victor Ségalen
351, cours de la Libération, 33405 Talence cedex, France

Contact the author

Keywords

microbial ecology, species, strains

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Multivariate characterization of Italian monovarietal red wines using FTIR spectroscopy

The assessment of wine authenticity is of great importance for consumers, producers and regulatory agencies to guarantee the geographical origin of wines and grape variety as well. Since mid-infrared (MIR) spectroscopy with chemometrics represent a suitable tool to ascertain the wine composition, including features associated with the polyphenolic compounds, the aim of this study was to generate MIR spectra of red wines to be exploited for classification of red wines based on the relationship between grape variety and wine composition. Several multivariate data analyses were used, including Principal Component Analysis (PCA), Discriminant Analysis (DA), Support Vector Machine (SVM), and Soft Intelligent Modelling of Class Analogy (SIMCA).

The effect of ozonated water treatment on the metabolic profile and resistance of vines to Downy and powdery mildew 

Ozone is a potent oxidizing compound that quickly decomposes into oxygen without residues. Previous works reported that ozone is not only a disinfectant that directly harms the pathogens of the vine but also activates systemic defense systems in the plant by activating oxidative stress. We assume these systemic defense mechanisms are essential to the vines’ resistance to downy and powdery mildew (Plasmopara viticola & Erysiphe necator, respectively). The goals of the research are to examine the effect of spraying with ozone water on the plant’s resistance against the mentioned pathogens as well as to characterize the metabolic profile of the plants treated with ozone as well as physiological characteristics in the vines such as the level of Photosynthesis and crop yield. Vines in the vineyard sprayed with ozone water at concentrations of 2 and 4 PPM weekly and biweekly, untreated control & conventional spray. Leaves were taken from vines 2,4,7,9 and 11 days after exposure to ozone and inoculated with the pathogens.

Screening of soil yeasts with fermentative capacity from the antarctic continent for their application in the wine industry

AIM: In the last years, many wineries are increasing experimentation to produce more distinguishable beverages. In this sense, the reduction of the fermentation temperature could be a useful tool because it preserves volatile compounds and prevents wines from browning, particularly in the case of white wines.

Combination of NIR multispectral information acquired from a ground moving vehicle with AI methods to assess the vine water status in a Tempranillo (Vitis vinifera L.) commercial vineyard

Increasing water scarcity and unpredictable rainfall patterns necessitate efficient water management in grape production. This study proposes a novel approach for monitoring grapevine water status in a commercial vertically-shoot-positioned Vitis vinifera L. Tempranillo vineyard using non-invasive spectroscopy with a battery of different AI methods to assess vineyard water status, that could drive precise irrigation. A contactless, miniature NIR spectrometer (900-1900 nm) mounted on a moving vehicle (3 Km/h) was employed to collect spectral data from the vines’ northeast side along six dates in season 2021.

Decline of rootstock-mediated physiological responses in Tempranillo grapevines by prolonged extreme conditions

Agriculture faces many global warming challenges especially in the Mediterranean region. Many strategies have been proposed in viticulture to manage global warming. Rootstocks are among them since they may affect water uptake and the scion’s performance.
The study conducted in La Rioja, Spain, aimed to investigate the impact of different rootstocks (1103P and 161-49C) on the performance of the Tempranillo grapevine scion over a three-day cycles under drought and extreme conditions, specifically during a heatwave in July 2022, with maximum air temperatures up to 40ºC and average daily temperatures of 29.1ºC.