Terroir 2006 banner
IVES 9 IVES Conference Series 9 The wine microbial consortium: a real terroir characteristic

The wine microbial consortium: a real terroir characteristic

Abstract

Yeast, bacteria, species and strains play a key role in the winemaking process by producing metabolites which determine the sensorial qualities of wine. Therefore microbial population numeration, species identification and strains discrimination from berry surface at harvest to storage in bottle are fundamental. The microbial diversity and significance of its variation according to vineyard and cellar have not really been thoroughly considered in literature, and is the focus of this work. That should be of great interest because the spontaneous microbial population dynamics associated with a wine producing estate provide information on what might be considered as the method to obtain specific terroir typed wine. The both use of conventional microbiological methods numbering the wine microbial populations and efficient molecular tools of species identification and strains discrimination has demonstrated the microbial differences according to the estate revealing the microbial part in specific terroir characteristic.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Vincent RENOUF, Cécile MIOT-SERTIER and Aline LONVAUD-FUNEL

Laboratoire de Biotechnologie et de Microbiologie Appliquée, Faculté d’oenologie
UMR INRA,Université Bordeaux 2 Victor Ségalen
351, cours de la Libération, 33405 Talence cedex, France

Contact the author

Keywords

microbial ecology, species, strains

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Phenolic composition of Bordeaux grapes 2009 vintage: comparison with 2006, 2007 and 2008 vintages

‘Cabernet sauvignon’ and ‘Merlot’ are among the most recognized red wine grape cultivars. This work is aimed at investigating the proanthocyanidin composition of skins and seeds to determine the grape variety and the vintage effects on the phenolic composition of Bordeaux grapes.

Rootstock effect on Cabernet Sauvignon aromatic and chemical composition

Grape quality potential for wine production is strongly influenced by environmental parameters and agronomic factors. Several studies underline the rootstock effect on scions vegetative growth and berry composition [1] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Moreover, little is known about the effect of rootstock genetic variability on the aromatic composition in wines.

Phytochemical composition of Artemisia absinthium L.

Absinthe is historically described as a distilled, highly alcoholic beverage. It is an anise-flavoured spirit derived from botanicals, including the flowers and leaves of Artemisia absinthium L. (“grand wormwood”), together with green anise, sweet fennel, and other medicinal and culinary herbs.

Vitiforestry as innovative heritage. Adaptive conservation of historical wine-growing landscapes as response to XXI century’s challenges.

Traditional agricultural and agro-pastoral systems (prior to industrial revolution) often have the characteristic of being multiple systems, in which multiple crops are hosted simultaneously on the same plot. currently research suggests to study more in depth the potential of multiple agricultural systems in order to detect those characteristics of multiple agrarian systems that could allow modern viticulture to adapt to the challenges posed by climate change: rising temperatures with impacts on the phenological cycle of the vine, resurgence of plant deseases, extreme soil washout phenomena and hail storms, among others.

Genomic characterization of extant genetic diversity in grapevine

Dating back to the early domestication period of grapevine (Vitis vinifera L.), expansion of human activity led to the creation of thousands of modern day genotypes that serve multiple purposes such as table and wine consumption. They also encompass a strong phenotypic diversity. Presently, viticulture faces various challenges, which include threatening climatic change scenarios and an historical track record of genetic erosion. Paritularly with regards to wine varieties, there is a pressing need to characterize the extant genetic diversity of modern varieties, as a means to delvier knowledge-based solutions under a rapidly evolving scenario, that may enable improved yields and profiles, resistance to pathogens, and increased resilience to climate change.