Terroir 2006 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2006 9 Application of zoning to increase the value of terroirs (Terroir 2006) 9 Vine-growing zoning of the municipal territories of Ronda and Arriate (Malaga, Spain), « Sierras de Málaga » registered appellation of origin mark

Vine-growing zoning of the municipal territories of Ronda and Arriate (Malaga, Spain), « Sierras de Málaga » registered appellation of origin mark

Abstract

The aim of this communication is the study of the Ronda and Arriate municipal territories environment in order to define and to establish the main physical factors in relation to vine-growing land use. The vine-growing zoning proposed is based on geopedological and climatic features. The methodology comprises the raster to vector convertion of the lythologic units of Ronda ad Arriate based on the Geology Maps from the IGME (1990), and the adaptation of the geomorphologic information of the Environment Council (Junta de Andalucía) and that from the elevation, orientation and slope maps of Ronda y Arriate. Diverse field surveys made it possible the lithologic, geomorphologic and pedological examination, and to cartography the different Units enclosed in the territory; as well as the sampling, the analysis and description of the characteristic environments and an attempt of the diverse environments cartographic delimitation with the aid of an intense satellite images photointerpretation. Climatic parameters and the most relevant bioclimatic indexes were determined by using dates from weather stations placed in the study area and nearby; these parameters and indexes were spatially distributed afterwards. The use of the ESRI program ArcView (GIS), version 3.2, made it possible the handling of the basic georeferenced cartography to superpose the different layers and the territory zoning according to the vine-growing land use in areas which were defined by the association of previously established values.

The zones A, B and C, with different ranges of altitude (<650 m over sea level, 650-850 m and > 850 m, respectively), comprise typical geomorphologic units, with characteristic soil Groups in different lithologic and climatic environments. The cartography elaborated (scale map 1:50000) made it possible to give very useful information to the different zones generated by the territory zoning; to study in depth the characteristic of the soil Groups which appear in different geomorphologic and climatic sectors on different lithologic materials; and to evaluate the existing vine-growing plots at present. Three ranks of soils are proposed, each one enclosing three main soil Groups, according to the vine-growing diminishing aptitude: SV1 (LV, CL and FL(B)); SV2 (RG, VR(C) and FL(A)) and SV3 (VR(B), VR(A) and LP). (A) indicates in < 650 m altitude zones; (B) in 650-850 m altitude zones and (C) in > 850 m altitude.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Guillermo PANEQUE (1), Patricia PANEQUE (1), Paloma OSTA (1), Cristina PARDO (1), Celia ESPINO (1) and Fernando PÉREZ-CAMACHO (2)

(1) Dpto de Cristalografía, Mineralogía y Química Agrícola, Universidad de Sevilla, c/ Profesor García González 1, 41012 Seville, Spain
(2) Dpto de Agronomía, E.T.S.I.A.M, Universidad de Cordoba, Avda Mendez Pidal s/n. Cordoba, Spain

Contact the author

Keywords

Ronda, Arriate, lithology, soils, zoning

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Sensory and chemical effects of postharvest grape cooling on wine quality

Wine cellars are affected by seasonally fluctuating workloads and face challenges especially in the harvest period connected to the required timely processing of the harvested grapes.

EMERGENCE OF INORGANIC PHOSPHONATE RESIDUES IN GRAPEVINE PLANT PARTS, BERRIES AND WINES FROM SOURCES OTHER THAN FOLIAR SPRAYING

Inorganic phosphonates are known to effectively support the control of grapevine downy mildew in vi- ticulture. Their application helps the plant to induce an earlier and more effective pathogen defense. However, inorganic phosphonates have been banned in organic viticulture due to their classification as plant protection products since October 2013. Despite the ban, phosphonate has been recently detected in organic wines.

Evolution of biogenic amines content in wine during sample conservation – method optimisation for analysis of biogenicamines

The present paper reports the development of an optimized method for simultaneous analysis of
8 biogenic amines (Histamine, Methylamine, Ethylamine, Tyramine, Putrescine, Cadaverine, Phenethylamine, and Isoamylamine). It is based on a method developed by Gomez-Alonso et al. in 2007.

Field-grown Sauvignon Blanc berries react to increased exposure by controlling antioxidant homeostasis and displaying UV acclimation responses that are influenced by the level of ambient light

Leaf removal in the bunch zone is a common viticultural practice with several objectives, yet it has been difficult to conclusively link the physiological mechanism(s) and metabolic berry impact to this widely practiced treatment. We used a field-omics approach1 in a Sauvignon blanc high altitude model vineyard, showing that the early leaf removal in the bunch zone caused quantifiable and stable responses (over years) in the microclimate where the main perturbation was increased exposure. We provide an explanation for how leaf removal leads to the shifts in grape metabolites typically linked to this treatment and confirm anecdotal evidence and previous reports that leaf removal treatment at an early stage of berry development affects “quality-associated” metabolites (monoterpenes and norisoprenoids).

From plant water status to wine flavonoid composition: a precision viticulture approach in a Sonoma county vineyard

Plant water status of grapevine plays a critical role in affecting berry and final wine chemical composition. The environmental variabilities existing in vineyard system have significant impacts on plant water status, but it is challenging to individualize environmental factors from the temporal and spatial variabilities in vineyard. Therefore, there is need to monitor the ecophysical variation through utilizing precision viticulture tools in order to minimize the separation in berry composition. This study aims at delineating vineyard into different management zones based on plant water status explained by soil texture, and utilize differential harvest to equilibrate the final berry and wine composition.