Terroir 2006 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2006 9 Contributions to the definition of terroir (Terroir 2006) 9 Terroir and Typicity: proposed definitions for two essential concepts in the understanding of Geographical Indications and sustainable development

Terroir and Typicity: proposed definitions for two essential concepts in the understanding of Geographical Indications and sustainable development

Abstract

The content of this communication arises from the deliberations of a working group mandated within the framework of the INRA-INAO 2000-2003 research convention, which brought together INAO representatives and researchers who had worked on AOCs or PGIs, in disciplines from the sphere of the humanities (consumer science, marketing, rural development) and biotechnical sciences (agronomy, animal production science, technology, biochemistry). The aim was to suggest for the terms « terroir » and « typicity » definitions corresponding to objectives of an operational nature, in order to allow practitioners to work efficiently in the service of objectives specific to the geographical indications with tools that could be used for decisions concerning delimitation, production conditions and the accreditation of the product, and to scientific objectives so as to allow researchers to replace them in a general context and to help to revise them. In this instance, they are put forward to the vine and wine scientific community, where the concepts of terroir and typicity are widely used.

The concepts thus defined comprise an analytical grid to be filled in during operational and research assignments. The definition proposed for terroir has served as a basis for the work of a colloquium organised at UNESCO, and a UNESCO research group is undertaking a global inventory of terroirs within the context of its cultural diversity protection policy. The scope of the definition of terroir thus far exceeds the sole framework of geographical indications. Finally, the concept of typicity supposes the development of methods to characterise the sensory space of a product whose quality is not built on sensory assertions alone. This approach is therefore once again not limited to mere geographical indications, which leads one to move beyond the boundaries of sensorial analysis to establish links between the product space and the sensory space, which thereby constitutes the judgment of typicity.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

François CASABIANCA (1), Bertil SYLVANDER (1), Yolande NOËL (1), Claude BERANGER (1), Jean-Baptiste COULON (1), Georges GIRAUD (2), Gilles FLUTET (3), François RONCIN (3) et Éric VINCENT (3)

(1) INRA, 147 rue de l’Université, 75007 Paris, France
(2) ENITA Clermont-Ferrand, site de Marmilhat, 63 Lempdes, France
(3) INAO, 51 rue d’Anjou, 57008 Paris, France

Contact the author

Keywords

terroir, typicity, geographical indications, rural development

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

De novo Vitis champinii whole genome assembly allows rootstock-specific identification of potential candidate genes for drought and salt tolerance

Vitis champinii cultivars Ramsey and Dog-ridge are main choices for rootstocks to adapt viticulture in semi-arid and arid regions thanks to their distinctive tolerance to drought and salinity. However, genetic studies on non-vinifera rootstocks have heavily relied on the grapevine (Vitis vinifera) reference genome, which difficulted the assessment of the genetic variation between rootstock species and grapevines. In the present study, this limitation is addressed by introducing a novo phased genome assembly and annotation of Vitis champinii. This new Vitis champinii genome was employed as reference for mapping RNA-seq reads from the same species under drought and salt stresses, and for comparison the same reads were also mapped to the Vitis vinifera PN40024.V4 reference genome. A significant increase in alignment rate was gained when mapping Vitis champinii RNA-seq reads to its own genome, compared to the Vitis vinifera PN40024.V4 reference genome, thus revealing the expression levels of genes specific to Vitis champinii. Moreover, differences in coding sequences were observed in ortholog genes between Vitis champinii and Vitis vinifera, which therefore challenges previous differential expression analyses performed between contrasting Vitis genotypes on the same gene from the Vitis vinifera genome. Genes with possible implications in drought and salt tolerance have been identified across the genome of Vitis champinii, and the same genomic data can potentially guide the discovery of candidate genes specific from Vitis champinii for other traits of interest, therefore becoming a valuable resource for rootstock breeding designs, specially towards increased drought and salinity due to climate change.

Vine plant material: situation and prospect

vine plant material is one of the major factors of terroir. The vine numbers over 1,000 species, of which the main cultivated species, Vitis vinifera, includes some 6,000 varieties. For the last forty years, selection has been carried out on these, mainly through clonal selection. However, today, only 300 varieties present one or more clones. A dozen varieties are considered as international. The extreme requirements of selection, in terms of diseases, provoke the elimination of the majority of selected plants. This approach to selection is not thorough because it focuses mainly on elimination of virosis and phytoplasma diseases.

The role of vine trunk height in delaying grape ripening: insights for viticultural adaptation strategies

Global changes in temperature patterns necessitate the development of viticultural adaptation strategies. One promising approach involves modifying the training system and elevating trunk height. This study explored the potential of raising the vine trunk as an adaptive strategy to counteract the effects of increasing temperatures and delay ripening. Thermal conditions, radiation levels, and must composition were measured at different heights (10 and 150 cm) in a commercial vineyard of the minority variety Maturana Blanca, trained on a vertical cordon.

Terroir et variabilité microclimatique : pour une approche à l’échelle de la parcelle

The climatic component is one of the elements of the zoning of viticultural potential, alongside the geological and pedological components (Morlat, 1989; Lebon et al , 1993). Many climatic indices have thus been defined to estimate the potential for wine production at the scale of a region or a country (Carbonneau et al ., 1992). The main climatic variables used are temperature and radiation. We note in particular the indices of Branas, Huglin and Ribereau-Gayon (Huglin, 1986). However, few studies have been undertaken on the spatial variability of microclimatic conditions at the scale of a vineyard, a valley, or even a municipality.

Dynamic agrivoltaics, climate protection for grapevine driven by artificial intelligence

The year-on-year rise in temperatures and the increase in extreme weather events due to climate change are already having an impact on agriculture. Among the perennial fruit species, grapevine is already negatively impacted by these events through an acceleration of its phenology, more damage from late frosts or through an increase in the sugar level of the berries (and therefore the alcoholic degree of the wine) and a decrease of acidity, impacting the wine quality. Sun’Agri, in partnership with INRAE, Chambre d’agriculture du Vaucluse, Chambre d’agriculture des Pyrénées-Orientales and IFV, developed a protection system based on dynamic agrivoltaics to protect grapevine. It consists of photovoltaic solar panels positioned above the crop, high enough not to impede the passage of agricultural machinery, and tiltable from +/- 90° to adjust the level of shading on the vineyard. These smart louvers, driven by artificial intelligence (physical models & plant growth models), are steered according to the plant’s needs and provide real climate protection.