Macrowine 2021
IVES 9 IVES Conference Series 9 Distribution analysis of myo and scyllo-inositol in natural grape must

Distribution analysis of myo and scyllo-inositol in natural grape must

Abstract

As it is well known, myo and scyllo-inositol are two characteristic sugars of grape must and, for this reason, their quantification has been proposed to control the authenticity of the concentrated and rectificated grape must. Indeed, these polyalcohols, which originate in the grape berries and are not retained by the resins used for the concentration process, are not naturally present in other commercial sugars from different botanical origins [1]. However, up to now, no study has exhaustively investigated the concentration variability of myo and scyllo-inositol in natural grape musts and for this reason in the definition of rectified concentrated grape must the only presence of meso-inositol is prescribed without reporting any minimum limit [2]. In this work, 200 authentic Italian grape musts were collected and the concentration of the two polyalcohols was determined. The sampling was done during 2019 and 2020 harvest in 17 different Italian Regions (Abruzzo, Basilicata, Calabria, Campania, Emilia Romagna, Friuli Venezia Giulia, Lazio, Lombardy, Marche, Piedmont, Puglia, Sardinia, Sicily, Tuscany, Trentino-Alto Adige, Umbria, and Veneto). A total of 85 different grape varieties were considered to describe the natural variability. Quantification of myo and scyllo-inositol was performed by gas chromatography after silylation. The method used was obtained by modifying the official method RESOLUTION OIV-OENO 419C-2015 concerning the quantification of myo and scyllo -inositol in rectified concentrated grape musts [3]. The aim of our work was to create an extensive data bank and to investigate the impact of the geographical origin, grape variety and the different year of harvest on the concentration of myo and scyllo-inositol. Furthermore, it has been verified the influence of the process to obtain the concentrated grape must starting from the natural one on the content of the two polyalcohols.

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Mauro Paolini

Fondazione Edmund Mach – San Michele all’Adige (Italy),Letizia, ALLARI, Unione Italiana Vini – Verona (Italy) Loris, TONIDANDEL, Fondazione Edmund Mach – S. Michele all’Adige (Italy) Matteo, PERINI, Fondazione Edmund Mach – S. Michele all’Adige (Italy) Katia, GUARDINI, Unione Italiana Vini – Verona (Italy) Roberto, LARCHER, Fondazione Edmund Mach – S. Michele all’Adige (Italy)

Contact the author

Keywords

characterization, myo-inositol, scyllo-inosytol, grape must, data bank

Citation

Related articles…

Harvest dates – temperature relationships and thermal requirements of winegrape varieties in Greece: observed and future climate responses

Air temperature is arguably one of the most decisive factors for winegrape varieties developmental cycle, ripening potential and yield.

Application of uv-led in wine as an alternative to sulphur dioxide

Sulfites (SO2) are commonly used in the wine industry to preserve products during storage for antiseptic and antioxidant purposes (Oliveira et al., 2011).

Withering of the ‘Moscato giallo’ grapes under covered space

For the purpose of producing predicate wines in northern part of Croatia, grapes are traditionally left on the vine unpicked. However, grapes on the vine are exposed to unfavorable environmental conditions that affect rapid rotting and attacked by birds. To eliminate the mentioned risks, the grapes can be picked and placed in a protected space (loft, greenhouse, etc.) suitable for drying. This study presents the results of research on withering grapes of the ‘Moscato giallo’ variety in two tretment: sun drying (under covered terrace) and drying in the shade (loft). The following quality parameters were monitored: mass of grapes, sugar concentration, content of total acids, pH, content of organic acids.

A 4D high resolution vineyard soil assessment for soil-hydrological interpretation in combination with automated data analysis and visualization to manage site-specific grape and wine quality

A Visual Information eNvironment for Effective agricultural management and Sustainability (VINES) is under development, which can provide significant competitive advantages to winegrowers by sustaining their appellation-specific grape and wine qualities and yields while measurably conserving water resources.

Soil variability effects on vine rootzones and available water

Aim: The aim of this work is educating people about soil variability, vine rootzone depth and readily available water holding capacity. The concept of terroir is readily discussed in the wine industry but many people involved are unable to describe a soil profile and interpret its limitations that impact on vine growth, fruit quality and wine produced. This paper discusses soil physical characteristics important to vine root growth and readily available water holding capacity (RAW).