Terroir 2006 banner
IVES 9 IVES Conference Series 9 Soave beyond the zonation

Soave beyond the zonation

Abstract

In a previous zoning program (1998-2002), climatic and pedological factors were able to distinguish 14 terroir within the Soave DOC area where wine characteristics are well recognizable. Nevertheless, in the past vinegrowers identified several vineyards where a better quality of the grapes and wines could be obtained. So, « beyond the zonation » will aim to suggest a new methodology to characterise the Cru, starting with 15 vineyards that were selected in the Soave Classico DOC area. In the year 2005, a meteorological station was positioned in each vineyard and temperature data were collected; because of the limited area of investigation, only 3 rain sensors were set up. Root distribution along the profile was ascertained and soil water availability was investigated by using a TDR equipment. From véraison to harvest grape samples were randomly collected and analysed for sugars (Brix), titratable acidity, pH and (only at harvest) for aroma compounds. In order to have a better understand of the influence of Cru on grape quality, wine was made keeping separated the grapes collected from each vineyard. Processing the temperature data, a first discrimination could be made between the two coldest (with the highest thermal range) Monte Carbonare and Froscà zones and the hottest Castelcerino, Costalta, Costeggiola and Pressoni. As a rule of thumb, the higher the temperatures, the greater the sugar level. On the other hand, titratable acidity and pH did not display such a variability. The aroma analysis supported the difference between Cru in terms of climate and pedology, being the coldest much richer in monoterpenoids (accounting for rose and acacia flower notes) and the hottest with a greater amount of norisoprenoids (accounting for mature and tropical notes). The wines, when drinkable, will confirm the chemical data results.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type : Poster

Authors

TOMASI D. (1), PASCARELLA G. (1), BORSA D. (2), LORENZONI A. (3) and VERZÈ G. (3)

(1) CRA-Istituto Sperimentale per la Viticoltura, viale XXVIII Aprile 26, 31015 Conegliano (TV), Italy
(2) Istituto Sperimentale per l’Enologia, Asti (AT), Italy
(3) Consorzio DOC SOAVE, Soave (VR), Italy

Contact the author

Keywords

Garganega, cru, aroma compounds, root distribution

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Organic mulches slightly influence wine phenolic composition and sensorial properties

Grapevines have traditionally been grown in semi-arid areas, but viticulture is now compromised by climate change. Therefore, it is necessary to implement environmentally friendly viticulture practices to adapt grapevines to current climatic conditions. In this context, organic mulches offer many benefits, such as reduced soil erosion and increased organic matter, soil water content and crop productivity. However, these practices must not compromise grape and wine quality. Therefore, the objective of this study was to evaluate the effect on wine physicochemical and phenolic composition and sensorial properties of different soil management practices on the vine row. Over four years, five soil treatments were examined in two different vineyards.

Applications pratiques du zonage vitivinicole

Le zonage vitivinicole présente toute une série d’applications pratiques. Son importance est en train d’augmenter, soit en fonction des moyens techniques chaque fois plus performants, qui rendent possible le développement des zonages de plus en plus intégrées, consistants et utiles, soit en fonction d’un marché de plus en plus mondialisé. L’article situe la contribution du zonage au niveau de la production vitivinicole et du développement du territoire.

Rootstock influence on xylem embolized vulnerability and scion behavior under severe water deficit

Severe water stress events can induce cavitation damage by xylem embolism in grapevine, diminishing plant hydraulic conductance. This work aimed to determine the rootstock effects on 1) xylem embolism vulnerability to understand its function failure under severe drought, including segmentation processes from leaf to root; and 2) hydraulic conductance across water deficit and its recovery. For this purpose, two complementary experiments were performed in one-year-old Vitis vinifera cv. Tempranillo grafted onto two different rootstocks (110-Richter and SO4) under well-watered 12L pot conditions. In experiment 1, the water-stress induced xylem embolism was monitored in leaves and stems, above and below grafting-point, by using “Cavicam” for determining the percentage of embolized vessels (at P12, P50 and P88).

Determination of selected phenolics, carotenoids and norisoprenoids in Riesling grapes after treatment against sunburn damage

Riesling represents the most widely cultivated grape variety in Germany and is therefore of particular economic interest. During recent years an increase in the petrol-note as well as in undesirable bitter and adstringent notes has been reported. These changes are most likely linked to increasing temperature and sunlight exposure of grapes due to climate changes.
The “petrol note” is caused by the formation of the C13-norisoprenoid 1,1,6-trimethyl-1,2-dihydronaphthalin (TDN), which originates from acid-labile precursors formed by the carotenoid degradation in the grape.

DISCRIMINATION OF BOTRYTIS CINEREA INFECTED GRAPES USING UNTARGE-TED METABOLOMIC ANALYSIS WITH DIRECT ELECTROSPRAY IONISATION MASS SPECTROMETRY

Infection of grapes (Vitis vinifera) by Botrytis cinerea (grey mould) is a frequent occurrence in vineyards and during prolonged wet and humid conditions can lead to significant detrimental impact on yield and overall quality. Growth of B. cinerea causes oxidisation of phenolic compounds resulting in a loss of colour and formation of a suite of off-flavours and odours in wine made from excessively infected fruit. Apart from wine grapes, developing post-harvest B. cinerea infection in high-value horticultural products during storage, shipment and marketing may cause significant loss in fresh fruits, vegetables and other crops. A rapid and sensitive assessment method to detect, screen and quantify fungal infection would greatly assist viticultural growers and winemakers in determining fruit quality.