Terroir 2006 banner
IVES 9 IVES Conference Series 9 Soave beyond the zonation

Soave beyond the zonation

Abstract

In a previous zoning program (1998-2002), climatic and pedological factors were able to distinguish 14 terroir within the Soave DOC area where wine characteristics are well recognizable. Nevertheless, in the past vinegrowers identified several vineyards where a better quality of the grapes and wines could be obtained. So, « beyond the zonation » will aim to suggest a new methodology to characterise the Cru, starting with 15 vineyards that were selected in the Soave Classico DOC area. In the year 2005, a meteorological station was positioned in each vineyard and temperature data were collected; because of the limited area of investigation, only 3 rain sensors were set up. Root distribution along the profile was ascertained and soil water availability was investigated by using a TDR equipment. From véraison to harvest grape samples were randomly collected and analysed for sugars (Brix), titratable acidity, pH and (only at harvest) for aroma compounds. In order to have a better understand of the influence of Cru on grape quality, wine was made keeping separated the grapes collected from each vineyard. Processing the temperature data, a first discrimination could be made between the two coldest (with the highest thermal range) Monte Carbonare and Froscà zones and the hottest Castelcerino, Costalta, Costeggiola and Pressoni. As a rule of thumb, the higher the temperatures, the greater the sugar level. On the other hand, titratable acidity and pH did not display such a variability. The aroma analysis supported the difference between Cru in terms of climate and pedology, being the coldest much richer in monoterpenoids (accounting for rose and acacia flower notes) and the hottest with a greater amount of norisoprenoids (accounting for mature and tropical notes). The wines, when drinkable, will confirm the chemical data results.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type : Poster

Authors

TOMASI D. (1), PASCARELLA G. (1), BORSA D. (2), LORENZONI A. (3) and VERZÈ G. (3)

(1) CRA-Istituto Sperimentale per la Viticoltura, viale XXVIII Aprile 26, 31015 Conegliano (TV), Italy
(2) Istituto Sperimentale per l’Enologia, Asti (AT), Italy
(3) Consorzio DOC SOAVE, Soave (VR), Italy

Contact the author

Keywords

Garganega, cru, aroma compounds, root distribution

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Description of the relationship between trunk disease expression and meteorological conditions, irrigations and physiological response in Chardonnay grapevines

In this audio recording of the IVES science meeting 2022, Florence Fontaine (Université de Reims Champagne Ardenne) speaks about grapevine trunk disease. This presentation is based on an original article accessible for free on OENO One.

Climate variability and its effects in the Penedès vineyard region (NE Spain)

This study present a detailed analysis of the rainfall and temperature changes in the Penedès region in the period 1995/ 96 – 2008/09, in comparison with the trends observed during the last 50 years, and its implications on phenology and yield.

Yeast interactions in chardonnay wine fermentation: impact of different yeast species using ultra high resolution mass spectrometry

During alcoholic fermentation, when yeasts grow simultaneously, they often do not coexist passively and in most cases interact with each others

Estimating bulk stomatal conductance of grapevine canopies

In response to changes in their environment, grapevines regulate transpiration using various physiological mechanisms that alter conductance of water through the soil-plant-atmosphere continuum. Expressed as bulk stomatal conductance at the canopy scale, it varies diurnally in response to changes in vapor pressure deficit and net radiation, and over the season to changes in soil water deficits and hydraulic conductivity of both soil and plant. It is necessary to characterize the response of conductance to these variables to better model how vine transpiration also responds to these variables. Furthermore, to be relevant for vineyard-scale modeling, conductance is best characterized using data collected in a vineyard setting. Applying a crop canopy energy flux model developed by Shuttleworth and Wallace, bulk stomatal conductance was estimated using measurements of individual vine sap flow, temperature and humidity within the vine canopy, and estimates of net radiation absorbed by the vine canopy. These measurements were taken on several vines in a non-irrigated vineyard in Bordeaux France, using equipment that did not interfere with ongoing vineyard operations. An inverted Penman-Monteith equation was then used to calculate bulk stomatal conductance on 15-minute intervals from July to mid-September 2020. Time-series plots show significant diurnal variation and seasonal decreases in conductance, with overall values similar to those in the literature. Global sensitivity analysis using non-parametric regression found transpiration flux and vapor pressure deficit to be the most important input variables to the calculation of bulk stomatal conductance, with absorbed net radiation and bulk boundary layer conductance being much less important. Conversely, bulk stomatal conductance was one of the most important inputs when calculating vine transpiration, further emphasizing the need for characterizing its response to environmental changes for use in vineyard water use modeling.