Terroir 2006 banner
IVES 9 IVES Conference Series 9 Soave beyond the zonation

Soave beyond the zonation

Abstract

In a previous zoning program (1998-2002), climatic and pedological factors were able to distinguish 14 terroir within the Soave DOC area where wine characteristics are well recognizable. Nevertheless, in the past vinegrowers identified several vineyards where a better quality of the grapes and wines could be obtained. So, « beyond the zonation » will aim to suggest a new methodology to characterise the Cru, starting with 15 vineyards that were selected in the Soave Classico DOC area. In the year 2005, a meteorological station was positioned in each vineyard and temperature data were collected; because of the limited area of investigation, only 3 rain sensors were set up. Root distribution along the profile was ascertained and soil water availability was investigated by using a TDR equipment. From véraison to harvest grape samples were randomly collected and analysed for sugars (Brix), titratable acidity, pH and (only at harvest) for aroma compounds. In order to have a better understand of the influence of Cru on grape quality, wine was made keeping separated the grapes collected from each vineyard. Processing the temperature data, a first discrimination could be made between the two coldest (with the highest thermal range) Monte Carbonare and Froscà zones and the hottest Castelcerino, Costalta, Costeggiola and Pressoni. As a rule of thumb, the higher the temperatures, the greater the sugar level. On the other hand, titratable acidity and pH did not display such a variability. The aroma analysis supported the difference between Cru in terms of climate and pedology, being the coldest much richer in monoterpenoids (accounting for rose and acacia flower notes) and the hottest with a greater amount of norisoprenoids (accounting for mature and tropical notes). The wines, when drinkable, will confirm the chemical data results.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type : Poster

Authors

TOMASI D. (1), PASCARELLA G. (1), BORSA D. (2), LORENZONI A. (3) and VERZÈ G. (3)

(1) CRA-Istituto Sperimentale per la Viticoltura, viale XXVIII Aprile 26, 31015 Conegliano (TV), Italy
(2) Istituto Sperimentale per l’Enologia, Asti (AT), Italy
(3) Consorzio DOC SOAVE, Soave (VR), Italy

Contact the author

Keywords

Garganega, cru, aroma compounds, root distribution

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Leaf necrosis induced by the insecticide carbaryl in Vitis rupestris ‘B38’

Carbaryl is an acetylcholine esterase inhibitor-type insecticide used for pest control on grapevine. We repeatedly observed the occurrence of interveinal leaf necrosis following carbaryl spray application in a Vitis rupestris x Vitis riparia F1 hybrid progeny vineyard. Spray applications induced necrosis in this progeny under both Missouri and New York field conditions an approximate one-to-one sensitive-to-insensitive segregation ratio and with 42% concordance. Results of subsequent in vitro experiments established causality between carbaryl treatment and leaf necrosis and confirmed the pattern of segregation observed in the field. We consistently map this phenotype to a major QTL on chromosome 16 of the female parent V. rupestris ‘B38’ regardless of whether we used field or in vitro-generated phenotype data.

Characterization of a Sémillon clonal population: exploring genetic diversity, metabolomic profiles, and phenotypic variations

Sémillon is a cultivated grape variety known for contributing to dry and sweet white wine production. However, only seven approved clones have been officially recognized in France[1]. In this study, we aimed to characterize the genetic diversity and metabolomic profiles of a Sémillon clonal population, shedding light on the potential variations within this important grape variety.

Terroir and climate: the role of homoclime matching

Climate is an important component or determinant of terroir, especially at the regional level. One can define three levels of terroir. These are the macro– or regional scale, which applies over tens of kilometres of the landscape. The second level is the meso- scale, which applies over kilometres or hundreds of meters, at the individual vineyard scale.

Soil incorporation of new superabsorbent hydrogels to improve vine tolerance to summer stress: physiological validation and vineyard applications

Hydrogels are soil-conditioning materials capable of absorbing substantial amounts of water relative to their weight.

Effect of foliar application of urea and nano-urea on the cell wall of Monastrell grape skins

The foliar application of urea has been shown to be able to satisfy the specific nutritional needs of the vine as well as to increase the nitrogen composition of the must. On the other hand, the use of nanotechnology could be of great interest in viticulture as it would help to slow down the release of urea and protect it against possible degradation. Several studies indicate that cell wall synthesis and remodeling are affected by nitrogen availability.