Terroir 2006 banner
IVES 9 IVES Conference Series 9 Soave beyond the zonation

Soave beyond the zonation

Abstract

In a previous zoning program (1998-2002), climatic and pedological factors were able to distinguish 14 terroir within the Soave DOC area where wine characteristics are well recognizable. Nevertheless, in the past vinegrowers identified several vineyards where a better quality of the grapes and wines could be obtained. So, « beyond the zonation » will aim to suggest a new methodology to characterise the Cru, starting with 15 vineyards that were selected in the Soave Classico DOC area. In the year 2005, a meteorological station was positioned in each vineyard and temperature data were collected; because of the limited area of investigation, only 3 rain sensors were set up. Root distribution along the profile was ascertained and soil water availability was investigated by using a TDR equipment. From véraison to harvest grape samples were randomly collected and analysed for sugars (Brix), titratable acidity, pH and (only at harvest) for aroma compounds. In order to have a better understand of the influence of Cru on grape quality, wine was made keeping separated the grapes collected from each vineyard. Processing the temperature data, a first discrimination could be made between the two coldest (with the highest thermal range) Monte Carbonare and Froscà zones and the hottest Castelcerino, Costalta, Costeggiola and Pressoni. As a rule of thumb, the higher the temperatures, the greater the sugar level. On the other hand, titratable acidity and pH did not display such a variability. The aroma analysis supported the difference between Cru in terms of climate and pedology, being the coldest much richer in monoterpenoids (accounting for rose and acacia flower notes) and the hottest with a greater amount of norisoprenoids (accounting for mature and tropical notes). The wines, when drinkable, will confirm the chemical data results.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type : Poster

Authors

TOMASI D. (1), PASCARELLA G. (1), BORSA D. (2), LORENZONI A. (3) and VERZÈ G. (3)

(1) CRA-Istituto Sperimentale per la Viticoltura, viale XXVIII Aprile 26, 31015 Conegliano (TV), Italy
(2) Istituto Sperimentale per l’Enologia, Asti (AT), Italy
(3) Consorzio DOC SOAVE, Soave (VR), Italy

Contact the author

Keywords

Garganega, cru, aroma compounds, root distribution

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Characterization of a unique mannan from Starmerella bacillaris for protein stabilization in white wine

Yeast cell wall components are valuable biotechnological tools with applications in oenology and beyond [1], [2].

Improved vineyard sampling efficiency using aerial NDVI

Random sampling is often considered to be the best protocol for fruit sampling because it is assumed to produce a sample that best represents the vineyard population.

An excessive leaf-fruit ratio reduces the yeast assimilable nitrogen in the must

Yeast assimilable nitrogen (YAN) in the grape must is a key variable for wine quality as a source of aroma precursors. In a situation of YAN deficiency, a foliar urea application upon the vine at veraison enhances YAN concentration and facilitates must fermentation. In 2013, Agroscope investigated the impact of leaf-fruit ratio on the nitrogen (N) assimilation and partitioning in grapevine Vitis vinifera cv. Chasselas following foliar-urea application with the aim of improving its efficiency on the YAN concentration.

Yeast derivatives: a promising alternative in wine oxidation prevention?

Oxidation processes constitute a main problem in winemaking. Oxidation result in color browning and varietal aroma loss, which are key attributes of wine organoleptic quality

Effect of Yeast Derivative Products on Aroma compounds retention in model wine

For many years, enological research has developed commercial formulates of yeast derivatives as stabilizing agents and technological adjuvants in winemaking. These products are obtained from yeast by autolytic, plasmolytic, or hydrolytic processes that liberate many macromolecules from the yeast cell, principally polysaccharides and oligosaccharides and most specifically mannoproteins that are well known for their ability to improve tartaric stability and to reduce the occurrence of protein hazes (Ángeles Pozo-Bayón et al., 2009; Charpentier & Feuillat, 1992; Morata et al., 2018; Palomero et al., 2009).