Terroir 2004 banner
IVES 9 IVES Conference Series 9 Soil clay mineralogy and potassium buffer capacity as potential wine quality determining factors in Western Cape vineyards

Soil clay mineralogy and potassium buffer capacity as potential wine quality determining factors in Western Cape vineyards

Abstract

The potassium (K) supply characteristics and clay mineralogies of a population of Western Cape soils were investigated to determine their potential effects on vine K uptake and wine quality. The total K contents of granite-, shale- and sandstone-derived soils varied, averaging 33.7, 26.1 and 4.5 cmol(+)/kg, respectively. Corresponding M NH4Cl exchangeable soil K levels were: 0.172, 0.042 and 0.035 cmol/kg. Ability to fix applied K also varied, decreasing from 0.350 in the shale-, to 0.188 in the sandstone- to -0.177 cmol/kg in the granite-derived soils. Potential buffering capacity for K was pH / liming dependent, particularly in the shale soils. Potassium uptake by Italian rye grass correlated negatively with K fixation. The K contents of Italian rye grass grown on the sandstone, shale and granite soils were, respectively, 2.32, 2.12 and 5.56 dry mass %. These results were explicable in terms of soil mineralogy. The presence of kaolinite in the clay fraction, with mica and K-rich feldspar cores in the silt fraction enabled the granite soils to release primary K, but conferred little power to fix, or to buffer K against luxury uptake or loss through leaching. In contrast, the shale soil clay fractions consistently contained vermiculite and interstratified 2:1 minerals. These conferred marked pH / liming dependent K buffer capabilities. The shale soils also contained K in micas in the non-clay fractions. The sandstone soils varied in terms of both mineralogy and clay content. Sandstone soils, in which the sand fractions were quartzitic were unable to deliver primary K. Similarly, sandstone soils having low clay contents had severely limited K buffering capabilities. The observed differences in the abilities of sandstone-, shale- and granite-derived soils to supply and buffer K may be sufficient to affect grape vine performance and wine quality in Western Cape vineyards.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

J. Wooldridge

ARC Infruitec-Nietvoorbij, Private Bag X5026, 7599 Stellenbosch, South Africa

Contact the author

Keywords

Clay, buffer capacity, granite, mineral, potassium, sandstone, shale, soil, vineyard, wine

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Développer des outils simples pour accompagner les viticulteurs dans leurs changements de pratiques et répondre aux enjeux du siècle à venir

French viticulture is currently facing major challenges as it enters the new century: climate change, the need to reduce inputs, societal issues, changing consumer habits, labor shortages …. Vinopôle bordeaux-aquitaine, to which the teams from the chambre d’agriculture de la gironde belong, supports winegrowers of the gironde and bergerac-duras regions in the gradual evolution of their practices.

Successive surveys to define practices and decision process of winegrowers to produce “Vins de Pays Charentais” in the Cognac firewater vineyard area

Le vin est un des produits finis que l’on obtient à partir de raisins. La vigne réagit à de nombreux facteurs environnementaux et son comportement est directement influencé par les pratiques culturales

Early detection project – make a GTD infection visible without disease symptoms

The presence of grapevine trunk diseases (GTDs) related pathogens leads to severe economic losses in wine‐growing regions all over the world

Modelisation of the microclimatical parameters for the viticultural ”terroirs”characterization of “Canton de Vaud” (Switzerland)

Dans le cadre d’une recherche sur les terroirs viticoles du canton de Vaud – Suisse, un modèle du microclimat intégrant température, relief, éclairement et pluviométrie a été conçu.

Reconocimiento geoedafológico para la zonificación vitivinícola de la D.O. Montilla-Moriles

En la región vitivinícola con D.O. Montilla-Moriles (Córdoba) la variabilidad geologico-petrográfica de los terrenos es grande (ROLDÁN GARCÍA y DIVAR RODRÍGUEZ, 1988 a; roldán garcía et al.