Terroir 2004 banner
IVES 9 IVES Conference Series 9 Methodology to assess vine cultivation suitability using climatic ranges for key physiological processes: results for three South African regions

Methodology to assess vine cultivation suitability using climatic ranges for key physiological processes: results for three South African regions

Abstract

Le climat a de fortes implications sur le bon fonctionnement physiologique de la vigne et a besoin d’être quantifié afin de déterminer l’aptitude des régions à la culture de la vigne. Une méthode, qui pourrait éventuellement servir à prévoir l’aptitude des régions à la culture de la vigne, est proposée. Les seuils climatiques (température, vitesse du vent et humidité relative) pour les processus physiologiques (aussi bien photosynthèse des feuilles qu’accumulation des sucres et potassium et formation d’acide organique et respiration) ont été étudiés dans trois régions viticoles d’Afrique du Sud (Stellenbosch, Roberston et Upington) pendant les périodes de pré-et post-véraison. Sont considérés à la fois les seuils climatiques optimum et extrêmes. Une variation importante dans le nombre d’heures disponibles pour le fonctionnement physiologique optimal (selon les paramètres étudiés) apparait entre les régions. En considérant tous les facteurs, la région de Stellenbosch semblerait être la plus appropiée aux besoins physiologiques étudiés pour la culture de la vigne.

Climate has serious implications on proper physiological functioning of grapevines and needs to be quantified in order to determine the vine cultivation suitability of grape growing regions. Methodology is proposed that may eventually be used to predict the suitability of regions/terroirs for grapevine cultivation. Climatic ranges of temperature, wind speed and relative humidity for key physiological processes (photosynthesis of the leaves as well as sugar and potassium accumulation, organic acid formation and respiration, and colour and flavour development in the grapes) were studied in three wine producing regions of South Africa (Stellenbosch, Robertson and Upington) during the pre- and post-véraison growth periods. Both optimum and extreme climatic ranges were considered. Marked variation in the number of hours available for optimal physiological functioning (according to the parameters studied) occurred between the regions. All factors considered, the Stellenbosch region would seem to be best suited to the studied physiological requirements for grapevine cultivation.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

J.J. Hunter (1) and V. Bonnardot (2)

1) Infruitec/Nietvoorbij-Institute for Fruit, Vine and Wine of the Agricultural Research Council (ARC) Private Bag X5026, 7599 Stellenbosch, South Africa
2) ARC-Institute for Soil, Climate and Water (ISCW), Private Bag X5026, 7599 Stellenbosch, South Africa

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Unraveling the complexity of high-temperature tolerance by characterizing key players of heat stress response in grapevine

Grapevine (Vitis spp.) is greatly influenced by climatic conditions and its economic value is therefore directly linked to environmental factors. Among these factors, temperature plays a critical role in vine phenology and fruit composition. In such conditions, elucidating the mechanisms employed by the vine to cope with heat waves becomes urgent. For the past few years, our research team has been producing molecular and metabolic data to highlight the molecular players involved in the response of the vine and the fruit to high temperatures [1]. Some of these temperature-sensitive genes are currently undergoing characterization using transgenesis approaches coupled or not with genome editing, taking advantage of the Microvine genotype [2].

Organic mulches slightly influence wine phenolic composition and sensorial properties

Grapevines have traditionally been grown in semi-arid areas, but viticulture is now compromised by climate change. Therefore, it is necessary to implement environmentally friendly viticulture practices to adapt grapevines to current climatic conditions. In this context, organic mulches offer many benefits, such as reduced soil erosion and increased organic matter, soil water content and crop productivity. However, these practices must not compromise grape and wine quality. Therefore, the objective of this study was to evaluate the effect on wine physicochemical and phenolic composition and sensorial properties of different soil management practices on the vine row. Over four years, five soil treatments were examined in two different vineyards.

The Wine Active Compounds (WAC) conference 2022

The 5th edition of the International Conference Series on Wine Active Compounds (WAC) will be held from 29 June to 1 July 2022 (Dijon, France). All authors with accepted abstracts will have the possibility to publish either a short 4-pages article or a...

Evaluation of Acıkara (Vitis vinifera L.) native grape variety of anatolia for red wine production potential

The acıkara grape variety, a nearly forgotten native black variety in Anatolia/Turkey, has recently gained interest in its potential for producing high-quality wine from producers and consumers. The potential of producing high-quality red wine from the Acıkara grape variety (vitis vinifera), which is cultivated on the elmalı/antalya in the highland (1100 m altitude) of western mediterranean region, was investigated, and the suitability of the wine’s characteristics associated with high-quality red wine was determined.

‘TROPICAL’ POLYFUNCTIONAL THIOLS AND THEIR ROLE IN AUSTRALIAN RED WINES

Following anecdotal evidence of unwanted ‘tropical’ character in red wines resulting from vineyard interventions and a subsequent yeast trial observing higher ‘red fruit’ character correlated with higher thiol concentrations, the role of polyfunctional thiols in commercial Australian red wines was investigated.
First, trials into the known tropical thiol modulation technique of foliar applications of sulfur and urea were conducted in parallel on Chardonnay and Shiraz.1 The Chardonnay wines showed expected results with elevated concentrations of 3-sulfanylhexanol (3-SH) and 3-sulfanylhexyl acetate (3-SHA), whereas the Shiraz wines lacked 3-SHA. Furthermore, the Shiraz wines were described as ‘drain’ (known as ‘reductive’ aroma character) during sensory evaluation although they did not contain thiols traditionally associated with ‘reductive’ thiols (H2S, methanethiol etc.).