Terroir 2004 banner
IVES 9 IVES Conference Series 9 Study of wine-growing land (“terroir”) characteristics in the canton of Vaud (Switzerland): ecophysiological behaviour of the vine (cv. Chasselas)

Study of wine-growing land (“terroir”) characteristics in the canton of Vaud (Switzerland): ecophysiological behaviour of the vine (cv. Chasselas)

Abstract

A study of the physiological and agronomical behaviour of the vine (cv. Chasselas) was conducted between 2001 and 2003 by the Swiss Federal Research Station for Plant Production at Changins (Agroscope RAC Changins) on various wine-growing farms (terroirs) in the Canton of Vaud (Switzerland), as part of a study project on Vaudois vines and vineyards in association with the firm I. Letessier (SIGALES) in Grenoble and the Federal Polytechnic School of Lausanne (EPFL).
In order to identify the typical characteristics of Vaudois wine-growing plots or “terroirs”, the chosen working method attempted to integrate all factors susceptible of influencing “terroir” functions : on the one hand, natural parameters (geology, soil and climate), and, on the other hand, vine response, the most important indicator of ‘terroir” value.
The study of vine behaviour was carried out over a region comprising about fifty Chasselas plots spread out over four pilot zones (1000 ha approximately). The defined pedological units, which are representative of vineyards, led to pertinent plant responses, in particular concerning hydrous plant reactions in the vine, its vegetative outgrowth, in addition to qualitative characteristics of the harvest.

Related articles…

A new winemaking technology: fermentation, aging and bottling without added additives and preservatives

Auric infinity Technology introduces three new patented products designated for fermentation, aging and bottling without added additives and preservatives that have never been used in the winemaking industry.

UNEXPECTED PRODUCTION OF DMS POTENTIAL DURING ALCOOLIC FERMENTATION FROM MODEL CHAMPAGNE-LIKE MUSTS

The overall quality of aged wines is in part due to the development of complex aromas over a long period (1.) The apparition of this aromatic complexity depends on multiple chemical reactions that include the liberation of odorous compounds from non-odorous precursors. One example of this phenomenon is found in dimethyl sulphide (DMS) which, with its characteristic odor truffle, is a known contributor to the bouquet of premium aged wine bouquet (1). DMS supposedly accumulates during the ten first years of ageing thanks to the hydrolysis of its precursor dimethylsulfoniopropionate (DMSp.) DMSp is a possible secondary by-product from the degradation of S-methylmethionine (SMM), an amino acid iden- tified in grapes (2), which can be metabolized by yeast during alcoholic fermentation.

A browser application for comprehensive 3-dimensional LC × LC × IM – MS data analysis to study grape and wine polyphenols

The analysis of structurally diverse proanthocyanidins in grapes and wine is challenging. Comprehensive two-dimensional liquid chromatography (LC×LC) and ion mobility spectrometry-mass spectrometry (IMS-MS) are increasingly used to address the challenges associated with the analysis of highly complex samples such as wine and grapes

Evolution of acetaldehyde concentration during wine alcoholic fermentation: online monitoring for production balances

During alcoholic fermentation, acetaldehyde is the carbonyl compound quantitatively the most produced by yeasts after ethanol. The dynamics of acetaldehyde production can be divided into 3 phases. Early formation of this compound is observed during the lag phase at the beginning of fermentation before any detectable growth [1].

To what extent does vine balance actually drive fruit composition?

Context and purpose of the study ‐ Vine balance is a concept describing the relationship between carbon assimilation (usually estimated using a measure of vine vigour, e.g. pruning weight) and its utilisation for fruit production (usually estimated using harvest yield). Manipulating vine balance through leaf area or crop load adjustments affects the proportion of the vine’s total carbohydrate production required to mature the fruit. It is commonly considered that composition of the berry, and resulting wine, is strongly affected by vine balance.