Terroir 2004 banner
IVES 9 IVES Conference Series 9 Study of wine-growing land (“terroir”) characteristics in the canton of Vaud (Switzerland): ecophysiological behaviour of the vine (cv. Chasselas)

Study of wine-growing land (“terroir”) characteristics in the canton of Vaud (Switzerland): ecophysiological behaviour of the vine (cv. Chasselas)

Abstract

A study of the physiological and agronomical behaviour of the vine (cv. Chasselas) was conducted between 2001 and 2003 by the Swiss Federal Research Station for Plant Production at Changins (Agroscope RAC Changins) on various wine-growing farms (terroirs) in the Canton of Vaud (Switzerland), as part of a study project on Vaudois vines and vineyards in association with the firm I. Letessier (SIGALES) in Grenoble and the Federal Polytechnic School of Lausanne (EPFL).
In order to identify the typical characteristics of Vaudois wine-growing plots or “terroirs”, the chosen working method attempted to integrate all factors susceptible of influencing “terroir” functions : on the one hand, natural parameters (geology, soil and climate), and, on the other hand, vine response, the most important indicator of ‘terroir” value.
The study of vine behaviour was carried out over a region comprising about fifty Chasselas plots spread out over four pilot zones (1000 ha approximately). The defined pedological units, which are representative of vineyards, led to pertinent plant responses, in particular concerning hydrous plant reactions in the vine, its vegetative outgrowth, in addition to qualitative characteristics of the harvest.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

V. Zufferey and F. Murisier

Agroscope RAC Changins, Federal Research Station for Plant Production Changins, Viticultural Centre Caudoz, CH-1009 Pully (Switzerland)

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

High resolution climatic zoning of the Portuguese viticultural regions

Viticulture and winemaking represent a key sector for the Portuguese economy. As grapevines are strongly governed by atmospheric factors, climate change may impose a major threat to this crop. In this study, the current-past (1950-2000) and future (2041-2070) climatic conditions in Portugal are analyzed using a number of bioclimatic indices, including a new categorized index (CatI).

Evaluation of sap flow and trunk diameter measurements in grapevines using time series decomposition

Grapevines are very sensitive to weather conditions. Excessively hot and dry periods trigger the activation of survival mechanisms, such as reduction of crop transpiration and the redistribution of water. Monitoring these mechanisms is, therefore, essential to better understand the grapevine water dynamics and maximize water-use efficiency.

Acetaldehyde-induced condensation products in red wines affect the precipitation of salivary proteins. Will this impact astringency?

Acetaldehyde is a common component of wine. It is already formed during the fermentation being an intermediate in the production of ethanol. Moreover, it can derive from the oxidation of ethanol during the wine production and aging. In wine, concentrations of acetaldehyde range from 30 to 130 mg/L. Acetaldehyde in wine can react with many compounds such as SO2, amino acids and

IMPACT OF ACIDIFICATION AT BOTTLING BY FUMARIC ACID ON RED WINE AFTER 2 YEARS

Global warming is responsible for a lack of organic acid in grape berries, leading to wines with higher pH and lower titrable acidity. The chemical, microbiological and organoleptic equilibriums are impacted by this change of organic acid concentration. It is common practice to acidify the wine in order to prevent these imbalances that can lead to wine defects and early spoilage. Tartaric acid (TA) is most commonly used by winemaker for wine acidification purposes. Fumaric acid (FA), which is authorized by the OIV in its member states for the inhibition of malolactic fermentation, could also be used as a potential acidification candidate since it has a better acidifying power than tartaric acid.

New markers for monitoring “fresh mushroom aroma” in wine: A dual approach using microbiological and chemical tools from the vineyard to winery–A synthesis of recent research advances

The ‘fresh mushroom off-flavour’ has been recognized by the wine industry as an emerging defect since the 2000s. For many years, this off-flavour was not specifically characterized and rather grouped under ‘earthy’ and ‘musty’ taints. However, it has become increasingly problematic due to its rising prevalence. In some vineyards, incidents of this off-flavour now occur as frequently as once every five years. This trend may be associated with climatic changes affecting regions that are more prone to warm and wet seasons.