Terroir 2004 banner
IVES 9 IVES Conference Series 9 The role of molecular ecophysiology in terroir expression

The role of molecular ecophysiology in terroir expression

Abstract

Terroir is a complex concept which associates soil, climate, grape variety and cultural practices that include the training system and oenological techniques. It is a type of social construction with man at its centre. The typicality of a wine is also a social construction which is the result of an agreement among specialists vis à vis a given quality of the wine whose references are the wine’s origins (e.g. terroir) and taste. The wines’ ‘origins’ refer both to its physical place of origin and to a historical continuity. Taste results from the interaction of several factors. The blending of wines from several different grape varieties grown either in the same terroir or in different terroirs in order to arrive at a ‘typical’ wine, identifiable as such by specialists or even the consumer illustrates the degree of complexity of the terroir concept and of the identification of typicality.
In the context of a molecular approach to viticultural terroirs associated with physiological and biochemical approaches, one of our current major priorities is to develop a deeper understanding of the influence of certain primary environmental factors (water and temperature) in conjunction with vine architecture (training system, plant bunch micro-climate) on the development and maturation of grapeberries.
The mechanisms that enable the vine to elicit an appropriate response to a given environmental signal depend on the ability of the grape variety in question to detect and decode the applied stimulus in order to activate the appropriate genetic stimuli. Molecular biology techniques that are used to dissect the regulatory networks activated when a grape variety is exposed to different stresses involve the identification and functional characterisation of so-called ‘initiator’ or ‘early-response’ genes. Activation of the genes that code for proteins involved in signal pathways and the regulation of genetic expression, results in the activation of so-called ‘secondary response’ genes that are responsible for the vine’s ability to adapt to its environment. New data obtained on the role of these genes in integrated approaches would appear to be of fundamental importance and opens the way to applied solutions, such as the treatment of vines with elicitor-type molecules or the development of genetically modified organisms

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

Alain Deloire (1) and Isabelle Gaillard (2)

(1) AGRO Montpellier, UMR 1083 « Sciences pour l’Oenologie et la Viticulture », 2 place P.Viala, F-34060 Montpellier cedex 1
(2) INRA, UMR 1083 « Sciences pour l’Oenologie et la Viticulture », 2 place P.Viala, F-34060 Montpellier cedex 1

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Winemaking techniques and wine tasting methods at the end of the Middle Ages

Les pratiques de vinification et de dégustation du vin sont souvent perçues, à travers un discours marketing très puissant, sous l’angle d’une tradition millénaire qui perdure depuis le Moyen Âge. En Bourgogne, il est courant de rattacher les racines de ces pratiques à l’activité des institutions ecclésiastiques qui possédaient d

How a microscopic yeast makes a big difference – how geographic limitations of yeast populations can determine the regional aroma of wine

Aim: Microbial biogeography contributes to regional distinctiveness of agricultural products and is important to determine for quality and marketing of wine products. We evaluated the microbial influence on wine characteristics by considering the microbial diversity of soil, plant, grapes, must and wine in grapegrowing regions across Victoria, Australia. 

The effect of organic, biodynamic and conventional production processes on the intrinsic and perceived quality of a typical wine

AIM: The aim of this study was to evaluate the impact of the organic, biodynamic and conventional production processes on the typicality of the Chianti DOCG wine and the relation with the environmental impact in terms of CO2 production

Assessment of wine non-Saccharomyces yeast strains as promising producers of glutathione

AIM: Glutathione (GSH) is a non-protein thiol naturally present in grape berries and produced by yeasts during fermentation. It has a strong antioxidant activity, thus can be added during winemaking to limit the oxidative phenomena of wine, preserving sensory characteristics and stability, ultimately promoting a healthier product by reducing the need for SO2 addition.

Challenges and opportunities for increasing organic carbon in vineyard soils: perspectives of extension specialists

Context description and research question: an increasing number of farmers are considering the impact of conservation practices on soil health to guide sustainable management of vineyards. Understanding impacts of soil management on soil organic carbon (SOC) is one lever for adoption of agroecological practice with potential to help maintain or improve soil health while building SOC stocks to mitigate climate change (Amelung et al., 2020).