Terroir 2004 banner
IVES 9 IVES Conference Series 9 The role of mechanization in zone/terroir expression

The role of mechanization in zone/terroir expression

Abstract

Vineyard mechanization will be addressed in this review paper primarily as related to pruning and harvesting since these operations typically require a great deal of the total yearly labour demand (Intrieri and Poni, 1998). However, to be able to define how mechanization interacts with “terroir”, a rigorous definition of the latter term is needed.
James Goode (www.wineanorak.com) states that “terroir” must be reserved solely to describe the physical environment in which the grapevine grows – that is the soil type, microclimate and slope of a defined area. However, we would rather prefer the following broader definition; “Terroir: the ecology of a wine. The total, inter-related environment wherein a grapevine is cultivated for the purpose of making wine. Key factors include, but are not limited to, cultivar type, soil, climate, vineyard location, planting density, training system, pruning philosophy & the cultural and social milieu wherein the whole enterprise takes place”. In fact, we think that also choices like vine spacing or training system define a “terroir”; if we imagine a high-density vineyard trained to goblet in the south of France to be pulled out and replanted at wider spacing with a strikingly different trellis, could we say that the wine coming from that vineyard is still the expression of the same “terroir”? We doubt it.
Once “terroir” has been generally defined, it has to be verified if the definition holds for both Old and New World. To simplify, it can be stated that Old World terroirists aim to make wines that express the “typicity” of the vineyard site by putting a major emphasis on soil effects; in the New World the “terroir” effect has been somewhat disregarded and it is still viewed, under a more pragmatic way, as a route to improved quality.
Here, another important question rises: are both Old and New World facing viticultural changes that will soon affect the relationship between “terroir” and mechanization? The answer is in the affirmative although these changes have different rationales. The increasing cost of hand labour, often associated with the difficulties of finding skilled workers (mostly for winter pruning), will indeed produce in the Old World an increased interest in mechanized grape production systems. It is a trend that will be hastened if this process is paralleled by lower wine prices on the market.
The New World is already highly mechanized (Australia is the appropriate example here). This high degree of mechanization is facilitated, among many factors, by vineyard size. It is known that some New World vineyards are hundreds of hectares in size, while some in the more traditional parts of Europe are fractions of a hectare. However, this also means that when very large vineyards are machine-harvested in Australia, different “terroirs” are likely blended and their individual winemaking potential is diluted or dispersed.
Given that wine quality is enhanced by fermenting homogeneous lots of fruits and that variation in batches of delivered grapes is mainly due to soil (Smart, 1996), several large companies in Australia are tackling soil mapping to spot zones of similar “Readily Available Water” or are considering precision viticulture (Morris, 2001). Using global positioning systems (GPS) in association with geographical information systems (GIS) makes it possible to divide vineyards into management grids, each of which is quantified and treated separately. Technology is already available (Robertson, 2000) to build sensors that record specific information from each vine in order to formulate maps for vigour, °Brix, phenols and so forth. Of course, this has an impact on mechanization since machineries are being modified to incorporate computerized monitoring devices and sensors. A pertinent example is GIS driven mechanical harvesters, which can adjust speed or slapper frequency according to the maturity gradient along a vine row. Quite paradoxically, it appears that the New World is moving quickly towards these techniques to fill the gap with the Old World in terms of “terroir” expression.
Mechanization clearly interacts with many of the key factors listed within the broader definition
of “terroir” (namely vineyard location, planting density and training system). Yet the meaning of “terroir” nowadays is still being associated with the general concept of “recognizable” grape quality. Therefore, the interaction between vineyard mechanization and “terroir” can probably be analyzed from two basic viewpoints:
A) How does the concept of full vineyard mechanization fit with maintenance of high quality requirements? This is a crucial issue. Indeed, still widespread in the Old World viticultural countries, such as Italy, it the “rule of thumb” whereby a fully mechanized vineyard cannot give top quality and that only the patient hand labour can actually achieve the “gold standards”;
B) Is mechanization a useful tool to reach maximum vineyard efficiency? A reasonable definition of vineyard efficiency is reaching the highest yield at the “desired” or “salable” quality at the lowest production costs.
The B statement broadens the area of interaction between mechanization and “terroir”. Here a suitable example is provided in Figure 1, showing the fractional distribution (year 2003) of exported Italian wine as a function of price per litre (Pedron, 2004). The narrow pyramid shows that only 2.9% of the total value is sold at prices higher than €6/l, whereas more than 65 % of the value goes to prices lower than €3/l. Therefore, restricting the term “terroir” to the top price would basically eliminate the need to investigate the interaction between “terroir” and “mechanization” since those bottles are quite likely coming from prestigious sites where labour cost is not, at least not yet, a priority. Clearly, even the lowest price rate can be representative of a “terroir” if the definition given at the beginning of this introduction holds.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

S. Poni (1), C. Intrieri (2)

(1) Istituto di Frutti-viticoltura, Università Cattolica del Sacro Cuore di Piacenza, Italy
(2) Dipartimento di Colture Arboree, Università degli Studi di Bologna, Italy

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Impact of strain and inoculation time on yeasts interactions: mass spectrometry-based study.

Under oenological conditions, when yeasts grow simultaneously during alcoholic fermentation, they often do not coexist passively, and in most cases, physiological and metabolic interactions are established between them. They interact by producing unpredictable compounds and fermentation products that can affect the chemical composition of the wine and therefore alter its aromatic and sensory

Cépage “Baga” région Bairrada. 2- De la conduite traditionnelle jusqu’au système ‘Lys’

Dans la Région de la Bairrada (Litoral-Centre du Portugal), on a étudié au 1999, l’influence des différents systèmes de conduite sur le cépage rouge “Baga”, le plus important de la Région.

Wine yeast species show strong inter- and intra-specific variability in their sensitivity to uv-c radiation

While the trend in winemaking is toward reducing the inputs and especially sulphites, the development of While the trend in winemaking is toward reducing the inputs

Variety and climatic effects on quality scores in the Western US winegrowing regions

Wine quality is strongly linked to climate. Quality scores are often driven by climate variation across different winegrowing regions and years, but also influenced by other aspects of terroir, including variety. While recent work has looked at the relationship between quality scores and climate across many European regions, less work has examined New World winegrowing regions. Here we used scores from three major rating systems (Wine Advocate, Wine Enthusiast and Wine Spectator) combined with daily climate and phenology data to understand what drives variation across wine quality scores in major regions of the Western US, including regions in California, Oregon and Washington. We examined effects of variety, region, and in what phenological period climate was most predictive of quality. As in other studies, we found climate, based mainly on growing degree day (GDD) models, was generally associated with quality—with higher GDD associated with higher scores—but variety and region also had strong effects. Effects of region were generally stronger than variety. Certain varieties received the highest scores in only some areas, while other varieties (e.g., Merlot) generally scored lower across regions. Across phenological stages, GDD during budbreak was often most strongly associated with quality. Our results support other studies that warmer periods generally drive high quality wines, but highlight how much region and variety drive variation in scores outside of climate.

Dynamic agrivoltaics, climate protection for grapevine driven by artificial intelligence

The year-on-year rise in temperatures and the increase in extreme weather events due to climate change are already having an impact on agriculture. Among the perennial fruit species, grapevine is already negatively impacted by these events through an acceleration of its phenology, more damage from late frosts or through an increase in the sugar level of the berries (and therefore the alcoholic degree of the wine) and a decrease of acidity, impacting the wine quality. Sun’Agri, in partnership with INRAE, Chambre d’agriculture du Vaucluse, Chambre d’agriculture des Pyrénées-Orientales and IFV, developed a protection system based on dynamic agrivoltaics to protect grapevine. It consists of photovoltaic solar panels positioned above the crop, high enough not to impede the passage of agricultural machinery, and tiltable from +/- 90° to adjust the level of shading on the vineyard. These smart louvers, driven by artificial intelligence (physical models & plant growth models), are steered according to the plant’s needs and provide real climate protection.