Terroir 1996 banner
IVES 9 IVES Conference Series 9 Production and technological characteristics of some French clones of the Chardonnay variety in Yugoslavia

Production and technological characteristics of some French clones of the Chardonnay variety in Yugoslavia

Abstract

[English version below]

L’observation est effectuée entre 1996 et 1998. L’expérience a commencé avec des clones numérotés: 75, 95, 96 et 227 de la variété Chardonnay. Le porte greffe est le Kober 5 BB. La forme de conduite est le cordon. La taille est longue. La densité de plantation est 3,5 x 1 mètre (2857 ceps par 1/ha). Le climat est moyen continental. Le sol est type de Cambisol. On a examiné les indicateurs suivants : la production du raisin; le poids, la forme, la longueur et largeur du grappe le poids, le forme, la couleur de la pellicule le contenu en sucre et l’acidité dans le moût, la teneur en alcool dans le vin (vol.%); la couleur; l’appréciation organoleptique du vin, etc.

Testing was held in the interval from 1996 to 1998. The trial was set up in 1992 with clones no. 75, 95, 96 and 277 of the Chardonnay variety. Rootstock Kober 5BB. Planting material as virus tested originates from France. Training form cordon. Long pruning. Planting distance 3.5 x 1 m (2,857 plants per hectare). Climate moderately continental. Soil character Cambisol. Zoning of the Chardonnay variety in vineyard districts of FR Yugoslavia. The following indicators have been tested: yield of grape, cluster mass, berry mass, shape, length and width of cluster, shape of berry, color of berry epidermis, content of sugar and acids in must, content of alcohol in wine, (vol.%) organoleptic appreciation, etc.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

L. AVRAMOV*, A. NAKALAMIC*, S. JOVIC*, D. ŽUNIC*, D. VUJOVIC* and D. JAKšIC**

*Lazar AVRAMOV, Faculty of Agriculture, 6 Nemanjina, 11081-Zemun, Yugoslavia
** Dusan JAKSIC, Federal office for herbal and animal genetics resources, 1 Omladinskih brigada, 11000 Belgrade – Yugoslavia

Contact the author

Keywords

clones, production, sucre, acidités, vin, Chardonnay
clones, yield, sugar, acids, wine

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

OmicBots – An innovative and intelligent multi-omics platform facing wine sector challenges

To face emerging competition and challenges, wine producers globally rely on precision viticulture (PV) solutions to boost productivity, enhance quality, increase profitability, and reduce the environmental impact of vineyards. Current pv methods predominantly use multispectral sensor data from several platforms (satellites or vineyard installations). However, these applications generally use data analysis strategies lacking physiological grapevine support.

First results on the chemical composition of red wines from the pressing of marc

In the Bordeaux vineyards, press wine represents approximately 15% of the total volume of wine produced[1]. Valuing this large volume of wine is necessary from an economic point of view, but also because of their organoleptic contribution to the blend, and their contribution to the construction of wines for laying down. Therefore, this study was developed considering the lack of recent scientific knowledge on the composition of red press wines. The aim of this study is to establish an initial assessment of their chemical composition including aromatic compounds and a phenolic part.

Photoselective shade films affect grapevine berry secondary metabolism and wine composition

Grapevine physiology and production are challenged by forecasted increases in temperature and water deficits. Within this scenario, photoselective overhead shade films are promising tools in warm viticulture areas to overcome climate change related factors. The aim of this study was to evaluate the vulnerability of ‘Cabernet Sauvignon’ grape berry to solar radiation overexposure and optimize shade film use for berry integrity. A randomized complete block design field study was conducted across two years (2020-2021) in Oakville, Napa Valley, CA, with four shade films (D1, D3, D4, D5) differing in the percent of radiation spectra transmitted and compared to an uncovered control (C0). Integrals for gas exchange parameters and mid-day stem water potential were unaffected by the shade films in 2020 and 2021. By harvest, berries from uncovered and shaded vines did not differ in their size or primary metabolism in either year. Despite precipitation exclusion during the dormant season in the shaded treatments, yield did not differ between them and the control in either season. In 2020, total skin anthocyanins (mg/g fresh mass) in the shaded treatments was greater than C0 during berry ripening and at harvest. Conversely, flavonol concentrations in 2020 were reduced in shaded vines compared to C0. The 2020 growing season highlighted the impact of heat degradation on flavonoids. Flavonoid concentrations in 2021 increased until harvest while flavonoid degradation was apparent from veraison to harvest in 2020 across shaded and control vines. Wine analyses highlighted the importance of light spectra to modify wine composition. Wine color intensity, tonality and anthocyanin values were enhanced in D4 whereas antioxidant properties were enhanced in C0 and D5 wines. Altogether, our results highlighted the need of new approaches in warm viticulture areas given the impact that composition of light has on berry and wine quality.

Oxygen consumption and changes in chemical composition of young wines

The study of the capacity to consume oxygen of the wines is an aspect of great interest since it allows to analyse their useful life.

Impact of temperature and solar radiation on grape composition variability in the Saint-Emilion winegrowing area 

Grape composition is strongly influenced by climate conditions. Their expected modifications in near future, notably because of increased temperatures, could significantly modify the biochemical composition of berries at harvest, and thus wine typicity and quality. Elevated temperatures favor sugar accumulation in grapes, enhance malic acid degradation and modify the amino acid content. They also reduce significantly anthocyanin accumulation in Merlot, leading to the imbalance between anthocyanins and sugars, while no significant effects on final anthocyanin levels were reported in Tempranillo[1] and finally affect aromas or aroma precursors.