Terroir 1996 banner
IVES 9 IVES Conference Series 9 Production and technological characteristics of some French clones of the Chardonnay variety in Yugoslavia

Production and technological characteristics of some French clones of the Chardonnay variety in Yugoslavia

Abstract

[English version below]

L’observation est effectuée entre 1996 et 1998. L’expérience a commencé avec des clones numérotés: 75, 95, 96 et 227 de la variété Chardonnay. Le porte greffe est le Kober 5 BB. La forme de conduite est le cordon. La taille est longue. La densité de plantation est 3,5 x 1 mètre (2857 ceps par 1/ha). Le climat est moyen continental. Le sol est type de Cambisol. On a examiné les indicateurs suivants : la production du raisin; le poids, la forme, la longueur et largeur du grappe le poids, le forme, la couleur de la pellicule le contenu en sucre et l’acidité dans le moût, la teneur en alcool dans le vin (vol.%); la couleur; l’appréciation organoleptique du vin, etc.

Testing was held in the interval from 1996 to 1998. The trial was set up in 1992 with clones no. 75, 95, 96 and 277 of the Chardonnay variety. Rootstock Kober 5BB. Planting material as virus tested originates from France. Training form cordon. Long pruning. Planting distance 3.5 x 1 m (2,857 plants per hectare). Climate moderately continental. Soil character Cambisol. Zoning of the Chardonnay variety in vineyard districts of FR Yugoslavia. The following indicators have been tested: yield of grape, cluster mass, berry mass, shape, length and width of cluster, shape of berry, color of berry epidermis, content of sugar and acids in must, content of alcohol in wine, (vol.%) organoleptic appreciation, etc.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

L. AVRAMOV*, A. NAKALAMIC*, S. JOVIC*, D. ŽUNIC*, D. VUJOVIC* and D. JAKšIC**

*Lazar AVRAMOV, Faculty of Agriculture, 6 Nemanjina, 11081-Zemun, Yugoslavia
** Dusan JAKSIC, Federal office for herbal and animal genetics resources, 1 Omladinskih brigada, 11000 Belgrade – Yugoslavia

Contact the author

Keywords

clones, production, sucre, acidités, vin, Chardonnay
clones, yield, sugar, acids, wine

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

VITIGEOSS Business Service: Task scheduling optimization in vineyards

Agriculture plantations are complex systems whose performance critically depends on the execution of several types of tasks with precise timing and efficiency to respond to different external factors. This is particularly true for orchards like vineyards, which need to be strictly monitored and regulated, as they are sensitive to diverse types of pests, and climate conditions. In these environments, managing and optimally scheduling the available work force and resources is not trivial and is usually done by teams of senior managers based on their experience. In this regard, having a baseline schedule could help them in the decision process and improve their results, in terms of time and resources spent.

Comparative studies on the dynamics of fermentation of selected wine yeasts

Alcoholic fermentation is an anaerobic biochemical process of oxidation-reduction in which carbohydrates are metabolized by the action of yeast enzymes in major products

A methyl salicylate glycoside mapping of monovarietal Italian white wines.

Among the main plant secondary metabolites, glycosides have a key-role in wine chemistry. Glycosides are non-volatile complex composed of a non-sugar component (aglycone) bound to one or more carbohydrates.

Nitrogen metabolism in Kluyveromyces marxianus and Saccharomyces cerevisiae: towards a better understanding of fermentation aroma production

During wine alcoholic fermentation, yeasts produce volatile aroma compounds from sugar and nitrogen metabolism. Some of the metabolic pathways leading to these compounds have been known for more than a century.

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body.