Terroir 1996 banner
IVES 9 IVES Conference Series 9 Elaboration des cartes conseils pour une gestion du terroir à l’échelle parcellaire: utilisation d’algorithmes bases sur des paramètres physiques du milieu naturel

Elaboration des cartes conseils pour une gestion du terroir à l’échelle parcellaire: utilisation d’algorithmes bases sur des paramètres physiques du milieu naturel

Abstract

The “Anjou Terroirs” programme aims at bringing the necessary scientific basis for a ratio­nal and reasoned exploitation of the technical itinerary of the terroir. The scale study is 1/12500. For the mapping, many parameters, such as the granulometry or the depth of soil are observed to each point of caracterisation. However, the composition and the quality of grapes do not depend directly on these parameters, but is influenced by variables such as water supply or vine precocity. These variables cannot be easily mapped, but can be esti­mated by algorithms based on expertise. The precision and the content of the cartographie study allow to quantify these main variables wich influence the vine behavior. It is therefore possible to build advisory maps that can be used by the vine growers at the scale of the par­cellary. As an example, a map on rootstock adaptation to the terroir has been published. Thanks to the knowledge obtained through a network of experimental plots, five fundamen­tal factors seems determinant to us, to choose a rootstock in Anjou condition: water sup­ply, natural drainage, iron chlorosis power of soil, vigour potential and precocity potential conferred by the terroir.

DOI:

Publication date: March 2, 2022

Issue: Terroir 1998

Type: Article

Authors

P. GUILBAULT, R. MORLAT, D. RIOUX

INRA-URVV 42, rue Georges Morel BP57, 49071 BEAUCOUZE Cedex – France

Tags

IVES Conference Series | Terroir 1998

Citation

Related articles…

Text mining of wine reviews to investigate quality markers of ‘Nebbiolo’ wines from Valtellina

In Valtellina zone (north Italy), the winemaking of ‘Nebbiolo’ grapes leads to the production of two main wine types: classic red wines from fresh grapes, usually classified as Valtellina Superiore DOCG (mandatory oak aging) or Rosso di Valtellina DOC, and the Sforzato di Valtellina DOCG, which is produced using withered grapes according to traditional product specification and subjected to mandatory oak aging process. The withering process influences grape chemical composition and, in turn, the wine sensory profile, which is strongly linked to the wine quality and typicity perceived by consumers.

Multivariate strategies for red wines classification using stilbenes and flavonols content

Bioactive polyphenols from grapes and wines, like stilbenes and flavonols (SaF), are often determined to nutritional evaluation, but also for many other purposes. The objective of this study was to quantify SaF in red wines from “Campanha Gaúcha”, a large and young viticultural region from South Brazil. Moreover, through statistical analysis, evaluate the influence of these compounds according to varieties, production process, harvest years and micro-regions of cultivation. A total of 58 samples of red wines were analyzed by high-performance liquid chromatography coupled to diode array detector (HPLC-DAD) for determination of trans-resveratrol (R), quercetin (Q), myricetin (M), kaempferol (K), trans-e-viniferin (V) and their precursor, cinnamic acid (C).

Effect of quercus alba oak barrels from different forest on the volatile composition of Tempranillo wines

The species and origin used for red wine oak aging determines the physiological composition of the wood and thus the finished wines. In America, oak is grown primarily

The wine microbial consortium: a real terroir characteristic

Yeast, bacteria, species and strains play a key role in the winemaking process by producing metabolites which determine the sensorial qualities of wine. Therefore microbial population numeration, species identification and strains discrimination from berry surface at harvest to storage in bottle are fundamental.

Development of a semi-controlled setup for manipulating drought and heat stress in open field trials

Drought and heat stress will pose challenges for the future of viticulture and wine quality, as grapevine biological processes are pushed beyond their optimum conditions. Efforts are increasing to study and predict the effects of drought spells and heatwaves on grapevine physiology and resulting harvest quality. This calls for the development of adequate systems to induce and manipulate the required stress, especially in open field trials where conditions are more difficult to control. We present a semi-controlled system for studying drought and heat stress in grapevine in the field.