terclim by ICS banner
IVES 9 IVES Conference Series 9 The impact of sustainable management regimes on amino acid profiles in grape juice, grape skin flavonoids, and hydroxycinnamic acids

The impact of sustainable management regimes on amino acid profiles in grape juice, grape skin flavonoids, and hydroxycinnamic acids

Abstract

One of the biggest challenges of agriculture today is maintaining food safety and food quality while providing ecosystem services such as biodiversity conservation, pest and disease control, ensuring water quality and supply, and climate regulation. Organic farming was shown to promote biodiversity and carbon sequestration, and is therefore seen as one possibility of environmentally friendly production. Consumers expect organically grown crops to be free from chemical pesticides and mineral fertilizers and often presume that the quality of organically grown crops is different or higher compared to conventionally grown crops. Integrated, organic, and biodynamic viticulture were compared in a replicated field trial in Geisenheim, Germany (Vitis vinifera L. cv. Riesling). Amino acid profiles in juice, grape skin flavonoids, and hydroxycinnamic acids were monitored over three consecutive seasons beginning 7 years after conversion to organic and biodynamic viticulture, respectively. In addition, parameters such as soil nutrient status, yield, vigor, canopy temperature, and water stress were monitored to draw conclusions on reasons for the observed changes. Results revealed that the different sustainable management regimes highly differed in their amino acid profiles in juice and also in their skin flavonol content, whereas differences in the flavanol and hydroxycinnamic acid content were less pronounced. It is very likely that differences in nutrient status and yield determined amino acid profiles in juice, although all three systems showed similar amounts of mineralized nitrogen in the soil. Canopy structure and temperature in the bunch zone did not differ among treatments and therefore cannot account for the observed differences in favonols. A different light exposure of the bunches in the respective systems due to differences in vigor together with differences in berry size and a different water status of the vines might rather be responsible for the increase in flavonol content under organic and biodynamic viticulture. 

DOI:

Publication date: May 4, 2022

Issue: Terclim 2022

Type: Article

Authors

Johanna Döring1, Frank Will2, Otmar Löhnertz3 and Randolf Kauer1

1Hochschule Geisenheim University, Institute of General and Organic Viticulture, Geisenheim, Germany
2Hochschule Geisenheim University, Institute of Beverage Research, Geisenheim, Germany
3Hochschule Geisenheim University, Institute of Soil Science and Plant Nutrition, Geisenheim, Germany

Contact the author

Keywords

integrated viticulture, organic, biodynamic

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Terroir factors causing sensory and chemical variation in Riesling wines

The term “terroir”, originated in France, comprises the interaction of soil, climate, and topography with the vines of a specific variety and may be extended to the human impact due to the active choice of viticultural and oenological treatments.

Évolutions qualitative et quantitative des flores microbiennes de moûts de pommes à cidre au cours de la fermentation: relations avec le terroir et la composition physico-chimique des fruits

En France, la filière A.O.C. cidricole emploie de plus en plus de levures initialement sélectionnées pour les fermentations des vins. Le risque d’une uniformisation organoleptique ou d’un marquage

Influence of must fining on wine pinking: relationship between electrochemical and colorimetric measurements and pinking attitude of wine

“Pinking” is a term used to define an abnormal pink coloration assumed by white wines in certain cases. Despite the are many hypotheses about the causes of this phenomenon, pinking still represents an issue for the wine industry. In the absence of reliable preventive strategies, wineries often rely on treatments such as charcoal fining, which is also negatively impacting wine aroma. This study aims at evaluating the potential of different fining agents based on animal or vegetal proteins to prevent wine pinking when applied at the level of must clarification. The work was carried out on Lugana wines, which is well-recognised as sensible to pinking problems. METHODS: Two experimental Lugana musts were obtained by applying a standard winemaking protocol and were then clarified with different commercial preparations based on vegetal proteins or casein, alone or in combination with PVPP. A control only using pectolytic enzyme was also prepared. Finings were carried out at 4°C for 16h, and the clear must (200 NTU) was then fermented in controlled conditions.

VOLATILE AND GLYCOSYLATED MARKERS OF SMOKE IMPACT: EVOLUTION IN BOTTLED WINE

Smoke impact in wines is caused by a wide range of volatile phenols found in wildfire smoke. These compounds are absorbed and accumulate in berries, where they may also become glycosylated. Both volatile and glycosylated forms eventually end up in wine where they can cause off-flavors. The impact on wine aroma is mainly attributed to volatile phenols, while in-mouth hydrolysis of glycosylated forms may be responsible for long-lasting “ashy” aftertastes (1).

Un siècle de publications et d’archives de l’OIV : un patrimoine mondial de valeur universelle exceptionnelle pour les sciences et techniques de la vigne et du vin

In 2004, at its general assembly, the oiv adopted the transfer of its scientific and technical heritage from the office to the international organisation of vine and wine. Unesco defines heritage as “our legacy from the past, what we live with today, and what we pass on to future generations.”