terclim by ICS banner
IVES 9 IVES Conference Series 9 Spatial determination of areas in the Western Balkans region favorable for organic production

Spatial determination of areas in the Western Balkans region favorable for organic production

Abstract

In problematic conditions for production of grapes and wine caused by the COVID-19 pandemic and the resulting occurrence of wine surpluses, producers are increasingly turning to the innovative viticulture and winemaking of products that are more appealing to the market and the consumers. On the other hand, consumption of the food safety or organic products, and therefore of organic grapes and wine, is increasingly common in the world, in particular in Europe. The Regional Rural Development Standing Working Group (SWG RRD), as a regional intergovernmental organization gathers actors in the viticulture and winemaking sector from states and territories of the Western Balkans (South-East Europe) in the Expert Working Group for Wine, with the aim of improving viticulture and winemaking in this region through joint activities. In accordance with the aforementioned, the SWG RRD is working on advancing organic production of grapes and wine, and on recognition of specificities of the terroir of wine-growing areas in Western Balkans. In addition, as part of the project “Facilitation of Exchange and Advice on Wine Regulations in Western Balkan Countries” helmed by the German Federal Ministry of Food and Agriculture, in addition to harmonization of relevant legislation with EU regulations, efforts are being invested towards recognition of organic wines. Within activities and project implemented by this organization, expert analyses and scientific research of the terroir of Western Balkans were carried out, and some of the results are presented in this paper.

The basis for production of organic grapes and wine is the achieved ideal balance between all abiotic and anthropogenic terroir factors, and one of the concepts for creating such a complex system is the selection of areas and locations with optimal conditions for (in this case organic) production of grapes and wine. This paper presents spatial determination of areas and localities that could potentially satisfy conditions for organic production of grapes and wine. Research included the territory of Western Balkans, that is, territories of members of the SWG RRD. Being the key topographic terroir factor for spatial determination of areas with favorable conditions for organic production of grapes and wine, exposure of terrains up to 600 m elevation was examined. Application of the digital elevation model (DEM) in the ArcGIS software selected areas with south, southeast and southwest terrain exposure as the most favorable exposure with respect to Western Balkans. The analyzed climate terroir factor that is significant for spatial selection of areas with high potential for organic production of grapes and wine was wind speed. GIS technology, with use of raster data from the Global Wind Atlas application, was used to select areas with favorable winds. Spatial and attribute data on median annual wind speeds in the interval between 4 and 6 m/s and in the interval between 6 and 8 m/s was analyzed.

 The biggest wine producer that currently also has the most surfaces under organic vineyards in the Western Balkans region is North Macedonia. However, after the research and spatial analysis was carried out it was determined that most of the selected surfaces with favorable exposure and wind speeds can be found in Serbia and Bosnia and Herzegovina, and the highest share of determined favorable surfaces in comparison with total surfaces of relevant countries/territories can be found in Serbia and Albania.

 With respect to the share of surfaces of selected areas with favorable exposure for potential organic production of grapes in comparison with the surfaces of zoned wine-growing areas, Montenegro has the highest potential with almost 6% of such favorable surfaces. Considering that the Western Balkans region has the spatially determined potential for organic production on surfaces totaling 173,252.52 ha according to the terroir factors examined in this paper, the possibility for increasing organic production of grapes and wine in specific spatially determined locations in members of SWG RRD is significant. All of this indicates the necessity for more active use of such positive terroir potentials of wine-growing areas in this part of Europe.

DOI:

Publication date: May 5, 2022

Issue: Terclim 2022

Type: Poster

Authors

Darko Jaksic1, Vesna Maras2, Milenko Blesic3, Tatjana Jovanovic-Cvetkovic4, Klime Beleski5, Dragoslav Ivanisevic6, Ylber Kuci7, Elton Basha8 and Ivan Bradic9

1Centre for Viticulture and Oenology Niš, Belgrade, Serbia
2University of Donja Gorica, Faculty for Food Technology, Food Safety and Ecology, Podgorica, Montenegro
3University of Sarajevo, Faculty of Agriculture and Food Sciences, Sarajevo, Bosnia and Herzegovina
4University of Banja Luka, Faculty of Agriculture, Banja Luka, Bosnia and Herzegovina
5University Ss. Cyril and Methodius, Institute of Agriculture, Department for Viticulture and Oenology, Skopje, North Macedonia
6University of Novi Sad, Faculty of Agriculture, Department for Fruit Growing, Viticulture, Horticulture and Landscape Architecture, Novi Sad, Serbia
7Department for Vineyards and Wine, MAFRD, Kosovo
8Agricultural University of Tirana, Tirana, Albania
9Centre for Viticulture and Oenology Niš, 37230 Aleksandrovac, Serbia

Contact the author

Keywords

terroir, terrain exposure, wind speed, organic production of grapes and wine, Western Balkans region

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

Investigating the impact of bottle color, temperature and light exposure on rose wine characteristics

Rosé is leading the fastest growth wine category which hit a 40% increase since 2002. France accounts for over a third (34%) of global consumption followed by the US

INFLUENCE OF GRAPE RIPENESS ON MACROMOLECULES EXTRACTABILITY FROM GRAPE SKIN TISSUES AND GRAPE SEEDS DURING WINEMAKING

A consequence of climate change is the modification of grape harvest quality and physico-chemical parameters of the obtained wine: increase in alcoholic degree, decrease in pH, and modification of the extractability of macromolecules, which leads to problems of microbiological, tartaric, colour and colloidal stability. In order to respond to these problems, the winemaking processes must be anticipated and adapted with a better knowledge of macromolecule extractability in grapes and their evolution, according to the grape variety, vintage and winemaking process. The purpose of this study was to understand 1) how the harvest date can influence the extractability of macromolecules, polysaccharides and phenolic compounds, which are responsible for wine stability 2) how to adapt the winemaking process to the harvest date in order to optimise wine quality.

Revisiting the effect of subsurface irrigation and partial rootzone drying on canopy size and yield of Cabernet Sauvignon using remote sensing techniques

Irrigation is an essential tool for grape production, especially where rainfall does not meet the optimal water requirements needed to achieve yield and quality targets. Increased evaporative demand of grapevines due to changing climate conditions, and a growing awareness for sustainable farming, require the improvement of irrigation techniques to maximize water use efficiency, i.e. using less water to achieve the same yields or the same water but larger yields. In this study, the performance of Cabernet Sauvignon vines was compared under three irrigation techniques: conventional aboveground drip irrigation, subsurface irrigation installed directly under the vine row, and partial rootzone drying in which two subsurface lines were buried in the middle of the two interrow spacings on each side of the vine row with irrigation alternated between the two lines based on soil moisture content.

Response of different nitrogen supplementation on Saccharomyces cerevisiae metabolic response and wine aromatic profile

The wine yeast Saccharomyces cerevisiae can highly affect wine aromatic profile by producing and/or mediating the release of a whole range of metabolites (such as thiols, esters, and terpenes), which in turn contribute to enhanced aroma and flavor. These metabolites depend on yeast metabolism activated during fermentation which can constitute the ‘’metabolic footprint’’ of the yeast strain that carried out the process.

Freeze-thaw temperature oscillations promote increased differential gene expression during grapevine bud dormancy

In northern cold climate conditions, chilling requirement fulfillment in dormant grapevine buds is slowed or stopped by subzero temperatures impacting the transcriptional processes needed to complete chilling requirement. Cabernet Franc and Reisling in Geneva, NY were used to determine the impact of natural oscillating temperatures on grapevine bud transcriptional activity during light and dark periods of a two-week period in January with fluctuating diurnal winter temperatures. Cabernet Franc and Reisling bud samples were collected at 32 time points during the natural vineyard temperature cycle at 6:00 (dark), 14:00 (light) and 18:00 (dark) hours) to monitor gene expression in consecutive freezing and non-freezing temperature oscillations. Genotype, light and dark, and temperature oscillations conditions were explored.