terclim by ICS banner
IVES 9 IVES Conference Series 9 Impact on leaf morphology of Vitis vinifera L. cvs Riesling and Cabernet Sauvignon under Free Air Carbon dioxide Enrichment (FACE)

Impact on leaf morphology of Vitis vinifera L. cvs Riesling and Cabernet Sauvignon under Free Air Carbon dioxide Enrichment (FACE)

Abstract

Atmospheric carbon dioxide (CO2) concentration has continuously increased since pre-industrial times from 280 ppm in 1750, and is predicted to exceed 700 ppm by the end of 21st century. For most of C3 plant species elevated CO2 (eCO2) improve photosynthetic apparatus results in an increased plant biomass production. To investigate the effects of eCO2 on morphological leaf characteristics the two Vitis vinifera L. cultivars, Riesling and Cabernet Sauvignon, grown in the Geisenheim VineyardFACE (Free Air Carbon dioxide Enrichment) system were used. The FACE site is located at Geisenheim University (49° 59′ N, 7° 57′ E, 94 m above sea level), Germany and was implemented in 2014 comparing future atmospheric CO2-concentrations (eCO2, predicted for the mid-21st century) with current ambient CO2-conditions (aCO2). Experiments were conducted under rain-fed conditions for two consecutive years (2015 and 2016). Six leaves per repetition of the CO2 treatment were sampled in the field and immediately fixed in a FAA solution (ethanol, H2O, formaldehyde and glacial acetic acid). After 24 h leaf samples were transferred and stored in an ethanol solution. Subsequently, leaf tissue was dehydrated using ethanol series and embedded in paraffin. By using a rotary microtomesections of 5 µm were prepared and fixed on microscopic slides. Subsequent the samples were stained using consecutive staining and washing solutions. Afterwards pictures of the leaf cross-sections were taken using a light microscope and consecutive measurements were conducted with an open source image software. Differences found in leaf cross-sections of the two CO2 treatments were detected for the palisade parenchyma. Leaf thickness, upper and lower epidermis and spongy parenchyma remained less affected under eCO2 conditions. The observed results within grapevine leaf tissues can provide first insights to seasonal adaptation strategies of grapevines under future elevated CO2 concentrations.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Article

Authors

Yvette Wohlfahrt1, Katja Krüger2, Susanne Tittmann1 and Manfred Stoll1

1Hochschule Geisenheim University, Department of General and Organic Viticulture, Geisenheim, Germany
2University of Applied Sciences Erfurt, Erfurt Research Centre for Horticultural Crops (FGK), Erfurt, Germany

Contact the author

Keywords

leaf morphology, Vitis vinifera, carbon dioxide, FACE

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

How do we describe wine imagery? Expertise shapes language usage and multimodal imagery for wine

The acquisition of wine expertise is a multi-faceted and multisensory process with implications for sensory perception, attention, memory, and language production. With the prevalence of the predictive model of brain functioning, one area of burgeoning research interest involves wine mental imagery, since the brain relies on imagined experiences to build predictions for the future. Recent evidence has shown that, for instance, those with higher imagery vividness are more susceptible to wine advertising. However, little is known about the association between mental imagery and other associated cognitive processes, such as the ability to produce words that describe such imagery. 

Making sense of a sense of place: precision viticulture approaches to the analysis of terroir at different scales

Agriculture, natural resource management and the production and sale of products such as wine are increasingly data-driven activities. Thus, the use of remote and proximal crop and soil sensors to aid management decisions is becoming commonplace and ‘Agtech’ is proliferating commercially; mapping, underpinned by geographical information systems and complex methods of spatial analysis, is widely used…

Soil survey and continuous classification for terroir delineation in the “Colli Orientali del Friuli” wine production area

The combination of a non-parametric dissimilarity index with auger boring recordings was tested in a project of soil suitability evaluation for quality wine production in a 2000-ha hill slope portion of the “Colli Orientali del Friuli” AOC district (Italy).

Soil humidity and early leaf water potential affected by water recharge before budbreak in cv. Tempranillo deficitary irrigated during the summer in the D. O. Ribera del Duero

The availability of water for irrigation is usually greater at the beginning of spring than in the following months, until the end of summer, in most regions of Spain.

Viticultural climate effect on the sensorial perception of wines. Methodological elements for a modelling at a world level

The objective of this study was to develop a methodology capable of modeling the effect of viticultural climate on wine sensory characteristics.