terclim by ICS banner
IVES 9 IVES Conference Series 9 Inhibition of Oenococcus oeni during alcoholic fermentation by a selected Lactiplantibacillus plantarum strain

Inhibition of Oenococcus oeni during alcoholic fermentation by a selected Lactiplantibacillus plantarum strain

Abstract

The use of selected cultures of the species Lactiplantibacillus plantarum in Oenology has grown in prominence in recent years. While initial applications of this species centred very much around malolactic fermentation (MLF), there is strong evidence to show that certain strains can be harnessed for their bio-protective effects. Unwanted spontaneous MLF during alcoholic fermentation (AF), driven by rogue Oenococcus oeni, is a winemaking deviation that is very difficult to manage when it occurs. This work set out to determine the efficacy of one particular strain of Lactiplantibacillus plantarum(Viniflora® NoVA Protect), against this problem in Cabernet Sauvignon must.  The work was carried out at commercial scale and in a winery environment and compared the bio-protective culture with the more traditional approach of reducing must pH by the addition of tartaric acid. The combination of both was also investigated. The concentration of both Oenococcus oeni and Lactiplantibacillus plantarum was determined using qPCR. The adventitious Oenococcus oeni showed the most growth during AF in the control wine, whereas in the wines treated with Lactiplantibacillus plantarum a bacteriostatic effect against this species was observed. This effect was comparable to the wines treated with tartaric acid.  This has particular commercial relevance for controlling the flora in musts with high pH, or when the addition of tartaric acid is either not permitted or is prohibitive for other reasons.

DOI:

Publication date: May 31, 2022

Issue: Terclim 2022

Type: Poster

Authors

Andrew Davey1, Thomas Houghton2, Andrea Manzotti3 and Duncan Hamm4

1,2Melbourne Polytechnic, Melbourne, Australia 
3,4Chr. Hansen A/S, Hørsholm, Denmark

Contact the author

Keywords

bioprotection ability, qPCR, Lactiplantibacillus plantarum, wine fermentation, Oenococcus oeni

Tags

IVES Conference Series | Terclim 2022

Citation

Related articles…

A applied viticultural zoning, based on the “secteurs de la reference” methodology, in the Cognac vineyard (France)

Dans les Charentes, en réponse à une crise de production du vignoble destiné à la production de Cognac, un plan de diversification viticole pour des vins de pays de qualité est mis en place. Il nécessite une connaissance des sols et de leurs caractéristiques viticoles pour orienter le choix des types de vins et adapter l’itinéraire technique de production.

Study of grape physiology and wine quality (cv. Merlot) in different identified terroirs of the canton Ticino (Switzerland)

Une étude de la physiologie de la vigne (cv. Merlot) et de la qualité des vins a été réalisée au Tessin de 2006 à 2008. La méthodologie utilisée pour cette étude intégrait tous les paramètres qui définissent les terroirs: facteurs naturels (géologie, pédologie et climat), facteurs physiologiques de la vigne et qualité des vins qui sont les révélateurs de la valeur d’un terroir.

Usefulness and limits of the crop water stress index obtained from leaf temperature for vine water status monitoring

Aims: This work aimed i) to calibrate the accuracy of estimating vineyard water status by crop water stress index (CWSI) compared to stem water potential; ii) to determine the time interval during the day that best correlates to stem water potential and iii) to understand the its usefulness.

Pedological factor influence on the viticultural zoning of the Aljarafe Alto (Seville, Spain)

Aljarafe Alto est une petite zone naturelle dans le département de Séville (Espagne), où le cépage autochtone cultivé est le Palomino Garrido Fino.

Characterization of variety-specific changes in bulk stomatal conductance in response to changes in atmospheric demand and drought stress

In wine growing regions around the world, climate change has the potential to affect vine transpiration and overall vineyard water use due to related changes in atmospheric demand and soil water deficits. Grapevines control their transpiration in response to a changing environment by regulating conductance of water through the soil-plant-atmosphere continuum. Most vineyard water use models currently estimate vine transpiration by applying generic crop coefficients to estimates of reference evapotranspiration, but this does not account for changes in vine conductance associated with water stress, nor differences thought to exist between varieties. The response of bulk stomatal conductance to daily weather variability and seasonal drought stress was studied on Cabernet-Sauvignon, Merlot, Tempranillo, Ugni blanc, and Semillon vines in a non-irrigated vineyard in Bordeaux France. Whole vine sap flow, temperature and humidity in the vine canopy, and net radiation absorbed by the vine canopy were measured on 15-minute intervals from early July through mid-September 2020, together with periodic measurement of leaf area, canopy porosity, and predawn leaf water potential. From this data, bulk stomatal conductance was calculated on 15-minute intervals, and multiple regression analysis was performed to identify key variables and their relative effect on conductance. Attention was focused on addressing multicollinearity and time-dependency in the explanatory variables and developing regression models that were readily interpretable. Variability of vapor pressure deficit over the day, and predawn water potential over the season explained much of the variability in conductance, with relative differences in response coefficients observed across the five varieties. By characterizing this conductance response, the dynamics of vine transpiration can be better parameterized in vineyard water use modeling of current and future climate scenarios.