IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Non-targeted analysis of C13-norisoprenoid aroma precursors in Riesling

Non-targeted analysis of C13-norisoprenoid aroma precursors in Riesling

Abstract

Significant wine aroma can be formed from non-volatile precursors that are linked to sugars, including but not limited to grape-derived monoterpene and C13-norisoprenoid glycosides. Most studies aiming to profile glycosidic flavour compounds in grapes and wine are performed by the analysis of hydrolytically liberated aglycones, either enzymatically or through acid hydrolysis, mainly due to a lack of analytical standards, diversity of glycosides, and their small concentrations. However, aglycone analysis alone can not reveal the full
complexity of precursors and the structural rearrangements of aglycones during and post-release, as it has been repeatedly reported for TDN and other related C13-norisporenoids that arise slowly during wine ageing.
The main objective of this study was to develop an analytical strategy to profile the potential presence of putative lead candidates and the presence of unknown precursors involved in the formation of the potent aroma compound, TDN, in Riesling wine. To uncover the structural complexity of TDN precursors, we firstly utilised a non-targeted metabolomics
approach (using HPLC with QTOF mass spectrometry) on Riesling grape grown under varied light conditions to determine potential candidates; putative TDN precursors ex wine were then further characterised by tandem mass spectrometry (HPLC-QqQ-MS/MS).
In addition to previously reported precursors, multiple glycosides were found in Riesling wine made from grapes grown under different light regimes which represent promising candidates likely to contribute to the formation of TDN. The results demonstrate that the combined HPLC-MS methods are effective for confirming and significantly expanding the
knowledge about the precursor pools involved in the formation of potential aroma compounds in wine. At the same time, this analytical strategy can help to develop a greater understanding of the environmental influences that can drive the formation of individual flavour precursors.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Grebneva Yevgeniya1, Herderich Markus¹, Rauhut Doris², Nicolotti Luca1 and Hixson Josh¹

¹The Australian Wine Research Institute
²Hochschule Geisenheim University

Contact the author

Keywords

Non-targeted analysis, aroma precursors, C13-norisoprenoids, glycosides, Riesling

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Impact of microclimate on berry quality parameters of white Riesling (Vitis vinifera L.)

Knowledge has been accumulated on the impact of microclimate, in particular berry temperature and irradiation, for a wide range of red varieties. However, little research has been dedicated on the effects of the same factors on the quality of white grape varieties.

Impact and comprehension of nitrogen and lipid nutrition on the production of fermentative aromas with different S. Cerevisiae yeasts used for spirits

In the Cognac appellation, the production of white wines is almost exclusively dedicated to elaborate Charentaise eaux-de-vie. In this sense, the quality of Cognac eaux-de-vie intrinsically depends on the quality of the base wines subjected to the distillation stage. In this context, the production of these base wines differs from those of classic white wines to release particular organoleptic properties during the distillation stage.

Does foliar fertilization with Seaweed improve the productivity and quality of ‘Merlot’ grape must?

Developing technologies that help vines survive and produce in quantity and quality within current times is mandatory. In this sense, in the 2021/2022 agricultural harvest, the influence of the foliar application of seaweed – Laminaria japonica was studied, aiming at productivity and quality of the must in the ‘Merlot’ grape. In the city of “Santana do Livramento”, “Rio Grande do Sul” (RS), Brazil; in a 15-year-old commercial vineyard of ‘Merlot’ clone ENTAV-INRA® 347, grafted onto ‘SO4’ rootstock, the following treatments were applied on 6 occasions: No treatment (control) and; Foliar application of Laminaria japonica seaweed (commercial product: Exal (ALAS), 2 kg ha-1).

Study of the aromatic oxidation markers of Tempranillo long aged wines

The aromatic quality of wines after a long aging period in bottle is one of key points for oenologists. The objective of this work is to determine the main representative aromatic compounds found in long aged wines from D.O.Ca. Rioja. This study was made by 32 wines from 1971 to 2010 vintages. Sotolon, acetaldehyde, phenylacetaldehyde, 1,1,6-trimethyl-1,2-dihydronaptalene (TDN), β-damascenone, Y-decalactone and Y-dodecalactone were determined as the most important oxidation markers by GC-MS analysis. Moreover, sensory analysis using triangular tests were performed from wines with and without the addition of the mentioned compounds. Four different concentrations of each odorant were added, as individual compounds and as mixtures. The additions were ranged from values close to the reference odour thresholds up to high level concentrations. The most identified aroma was sotolon, which is commonly associated to curry and coffee liqueur aromatic notes. Other oxidative compounds were easily detected by panellists, such as Y-decalactone (peach compote), Y-dodecalactone (ripe fruit). The mixtures of the odorants were most easily detected than the individual compounds. It should be noted that acetaldehyde and phenylacetaldehyde were rarely perceived and distinguished.

La zonazione in due zone viticole dell’emilia Romagna

Entre 1988 et 1995, dans la région Emilia-Romagna, deux zonages viticoles ont été complétés en zones assez differentes, soit géographiquement, soit par les conditions pedo-climatiques, soit par l’encépagement.