IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Use of mathematical modelling and multivariate statistical process control during alcoholic fermentation of red wine

Use of mathematical modelling and multivariate statistical process control during alcoholic fermentation of red wine

Abstract

Cyberphysical systems can be seen in the wine industry in the form of precision oenology. Currently, limitations exist with established infrared chemometric models and first principle mathematical models in that they require a high degree of sample preparation, making it inappropriate for use in-line, or that few oenological parameters are considered. To our knowledge, a system which incorporates a more comprehensive mathematical model as well as in-line spectroscopic monitoring for the purpose of precision oenology has not yet been presented.

The use of first principle mathematical modelling was employed to predict the trends of alcoholic fermentation and oenological parameters in a four-phase model based on initial conditions. The components of interest were sugars, alcohol, biomass, nitrogen, carbon dioxide, phenolic parameters, and pH. The phases considered included the lees, the cap, the must, and an intermediate liquid phase present in the cap. For each phase, a system of ordinary differential equations was developed to describe the change of each of the components listed. Parameters such as mass transfer coefficients and partition coefficients need to be determined via regression during the model development stage. To obtain the necessary data, fermentations using three different cultivars (Shiraz, Merlot, and Cabernet Sauvignon) were conducted using three different temperatures (20oC, 25oC, and 28oC). Samples were taken once per day and chemical analysis took place for each of the components. A functional mathematical model capable of generating accurate forecasts for different oenological components using the chemical composition of grapes was attempted. Additionally, the model should describe the change in parameters due to cap mixing and increasing ethanol concentration. The model includes the boundary conditions which can be used to determine if a fermentation is deviating from desired progression.

To complete this process control system, it is still necessary to utilize partial least squares (PLS) calibration models for real time monitoring. Additionally, outlier identification, caused by abnormal spectra, was performed using statistical analysis allowing samples to be re-analysed. The use of machine learning techniques and the development of local and incremental models was explored to assess a live updating of the PLS models. The expected outcome of this study is a combined system using dynamic modelling to predict the fermentation and extraction trends and the monitoring with real time predictions generated by PLS models

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Lambrecht Kiera Nareece¹, Du Toit Prof. W.J.¹, Louw Prof. T.M.²and Aleixandre Tudo Dr. J.L.¹,³

¹Stellenbosch University, South African Grape and Wine Research Institute, Department of Viticulture and Oenology
²Stellenbosch University, Department of Process Engineering
³Universitat Politecnica de Valencia, Instituto de Ingenieria de Alimentos para el Desarrollo (IIAD), Departamento de Tecnología de Alimentos

Contact the author

Keywords

In-line monitoring, process control, dynamic modelling, chemometrics, live modelling

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Tutela legale delle denominazioni di origine nel mondo (con aspetti applicativi)

Uno degli aspetti più importanti nel commercio internazionale dei vini a denominazione è quello del riconoscimento dei diritti di esclusiva garantiti sui e dal territorio geografico d’o­rigine. Al fine di cautelarsi nei confronti della sempre più agguerrita concorrenza mondiale, è opportuno adottare adeguate protezioni ufficiali e legali delle denominazioni che possono derivare sia dalla “naturalità” del prodotto stesso che dalla “originalità” più particolare.

Influence of edapho-climatic factors on grape quality in Conca de Barberà vineyards (Catalonia, Spain)

Soil and climate of 3 vineyards have been characterised in order to determine their influence on grape quality. These vineyards are located in Conca de Barberà (Catalonia, NE Spain) and belong to Cabernet sauvignon and Grenache noir cultivars. All 3 plots are very close, so only interannual climatic data of the nearest meteorological station have been considered.

Impact of nitrogen addition timing on the synthesis of fermentative aromas in alcoholic fermentation

Among the different compounds present in the must, nitrogen is an essential nutrient for the management of the fermentation kinetics but it also plays an important role in the synthesis of fermentative aromas.

Toasted Vine-Shoots As An Alternative Enological Tool. Impact On The Sensory Profile Of Tempranillo Wines

The use of toasted vine-shoots as an alternative enological tool to make differentiated wines has generated interest among researchers and wineries. However, the evolution of these wines in bottle and the effect on the sensory profile has not been studied so far.

Prediction of sauvignon blanc quality gradings with static headspace−gas chromatography−ion mobility spectrometry (SHS−GC−IMS) and machine learning

The main goal of the current study is the development of a cost-effective and easy-to-use method suitable for use in the laboratory of commercial wineries to analyze wine aroma. Additionally, this study attempted to establish a prediction model for wine quality gradings based on their aroma, which could reveal the important aroma compounds that correlate well with different grades of perceived quality METHODS: Parameters of the SHS−GC−IMS instrument were first optimized to acquire the most desirable chromatographic resolution and signal intensities. Method stability was then exhibited by repeatability and reproducibility. Subsequently, compound identification was conducted. After method development, a total of 143 end-ferment wine samples of three different quality gradings from vintage 2020 were analyzed with the SHS−GC−IMS instrument. Six machine learning methods were employed to process the results and construct a quality prediction model. Techniques that aim to explain the model to extract useful insights were also applied.