IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Interpreting wine aroma: from aroma volatiles to the aromatic perception

Interpreting wine aroma: from aroma volatiles to the aromatic perception

Abstract

Wine contains so many odorants that all its olfaction-related perceptions are, inevitably, the result of the interaction between many odorants. This natural complexity makes that the study of wine aroma has to deal not only with the quantitative determination of a large group of odorants, but has also to understand the basic principles determining the interactions between odorants. The basic mechanisms of odour interactions are not well known and seem to be very complex, but taking as base classical studies did by psychophysicists in the last 50 years, some outcomes of flavour chemistry, and some basic elements of the theory of perception, it has been recently possible to propose a systematic classification of odour interactions into four different categories: competitive, cooperative, destructive and creative. 
Competitive interactions take place when two or more non-blending odours are simultaneously perceived. The perceived intensity of any of them decreases as the odour intensities of other of the components is increased. Cooperative interactions take place when many odorants are present at subthreshold levels and are particularly relevant when similar odorants are present at whatever odour intensities. In these last cases, these interactions lead to the formation of odour vectors, which are groups of odorants of similar aroma acting concertedly and translating to the final product a specific aroma feature.  Destructive interactions take place when one of the odours present in the mixture is able to deconfigure the odour perception of the others, bringing about a decrease in the odour intensity before the deconfiguring odour is perceived. Most wine off-odours belong into this category. Creative interactions are configurational processes and take place when a new odour emerges out of the mixture of odorants. In milder cases, the addition of one odorant boosts the intensity of the others present in the mixture.
With these elements at hand, it is possible to propose a systematic to understand the chemical bases of wine aroma perceptions. Overall, around 80 aroma molecules, seem to be able to explain the different positive aroma nuances of all wines. The major wine volatile components, all of them by-products of alcoholic fermentation, form “the wine aroma buffer”, which is a mixture with vinous aroma and a strong deconfigurational power induced by the destructive interactions elicited by ethanol, isoamyl and isobutyl alcohols and acetic acid. Then, wine odorants are further classified into 35 different aroma vectors, broadly classified into 10 different odour categories. Some creative interactions, leading to relevant wine odours, such as pineapple, strawberry candy, black fruits or raisins have been also identified and will be discussed.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Vicente Ferreira¹

¹Laboratory for Aroma Analysis and Enology (LAAE)

Contact the author

Keywords

wine aroma, flavor, odorant, perceptual interaction

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

On quality assurance of winemaking components

This report examines product quality assurance issues arising when technological aids and food additives are utilized in winemaking.

Satellite imagery : a tool for large scale vineyard management

Remote sensing, using Near Infra Red wavelength, can characterize within-vineyard variability using vegetation index. Between 2007 and 2009, a study was led on the vineyards of a cooperative winery, in Fitou area (France) aiming at characterizing vineyard oenological potential. A vegetation index, green leaf cover, developed on crops (wheat, rice, corn…) was implemented on vineyards.

Study of the colour and phenolic evolution of three different tannin/anthocyanin ratios over time in a model wine

Phenolic compounds are important quality indicators in red wine. A large number of polyphenols play an important role in wine development, contributing to the colour and the sensory perception of the wines. Anthocyanins are the pigments responsible for the colour in young red wines while tannins are the principal contributors to the bitterness and the astringency of the wines. Wine polyphenols are considered more complex molecules than grape phenolics, due to the enormous number of chemical reactions which take place during the entire winemaking process and storage, forming more stable compounds.

How a microscopic yeast makes a big difference – how geographic limitations of yeast populations can determine the regional aroma of wine

Aim: Microbial biogeography contributes to regional distinctiveness of agricultural products and is important to determine for quality and marketing of wine products. We evaluated the microbial influence on wine characteristics by considering the microbial diversity of soil, plant, grapes, must and wine in grapegrowing regions across Victoria, Australia. 

Effect of fertigation strategies to adapt PGI Côtes de Gascogne production to hot vintage

The development of fertigation could be a possible solution to adapt PGI Côtes de Gascogne (south-western France) wine production to climate change. The goal would be to limit the negative effects of water stress on yield performance expectation (around 15 tons per hectare) and to make the use of fertilizers more efficient. This study aimed to compare the effects of three strategies of water and minerals supply on grapes and wines qualities. Two fertigation practices were compared to a rainfed control which is the current standard of the local grape growing production. The fertilizers (nitrogen and potassium) were (i) fully brought by irrigation pipe during the season, (ii) partially brought by irrigation pipe and partially on the soil or (iii) fully brought on the soil at the beginning of the season for the non-irrigated control (local standard). The trial was run on cv. Colombard trained on spur pruned with vertical shoot positioning system on a sandy-silty-clay soil over the 2020 vintage which was particularly hot for the region. Moderate to strong water deficit appeared during the growing period of the berries and held on after veraison. Irrigation strategies allowed for maintaining grapevine without water deficit and being significantly different from the control water status. Grapevine with fully or partial fertigation strategies produced 25% more yield mainly due to the increase of the bunch weight. Also, the fully fertigation showed the best ratio between yield and maturity and brought 30% less of fertilizers (both nitrogen and potassium) than the two other strategies. Finally, the analysis of aromatic compounds in Colombard wines, varietal thiols family, showed the same level of concentrations for the 3 treatments, confirming that the yield performance did not impact the aromatic potential in this trial.