IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Sensory and chemical profiles of Cabernet Sauvignon wines exposed to different irrigation regimes during heatwaves

Sensory and chemical profiles of Cabernet Sauvignon wines exposed to different irrigation regimes during heatwaves

Abstract

Heatwaves, defined as three or more consecutive days above average historical maximum temperatures, are having a significant impact on agricultural crop yields and quality, especially in arid or semi-arid regions with reduced water availability during the growing season. In grapevine, excessive heat can lead to not only crop loss, but a reduction in quality of the berries and resulting wine. The primary means of mitigating damage due to heatwaves is by applying excess irrigation water prior to and during the heatwave event, thus promoting evaporative cooling by the plant and reducing soil temperatures in the rooting zone and surface.  California wine-growing regions, among others, face a future of
decreased water availability, combined with increases in heatwave incidence, frequency, and intensity. Thus, we will require a greater understanding of the effects of heatwaves and water use at different times during development on grapevine physiology, berry composition, and wine chemistry and quality. In this study we evaluated the impact of different pre-heat wave irrigation practices on vine physiology and berry composition across the 2019 growing season in a commercial Cabernet Sauvignon vineyard in the Northern Central Valley of California, USA (Lodi, CA). Differential irrigation treatments were applied only when a heat event took place and started one or two days before each heatwave and continued until the last day of the heat event. Three irrigation treatments were implemented: a control or baseline, which was exposed to deficit irrigation and held at 60% ET, a second treatment where the irrigation was double the baseline  (2x baseline ET), and third treatment with triple the amount of water of the baseline (3x baseline ET). Replicated wine lots were fermented from each treatment following a standard red wine fermentation protocol. A trained panel characterized  sensorially the aroma and flavor profiles of the wines. Moreover, the wines’ volatile and phenolic profiles were analyzed and correlated to the sensory. 

We found that plants were able to recover from physiological stress caused by heat events but had a negative impact on berry biochemical traits. Negative effects on berry chemistry resulted from over and underwatering during heat waves. The sensory results showed how the differences found in treatments from a physiological and berry chemistry perspective are translated to the wines’ sensory properties and chemical characteristics

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Cantu Annegret¹, Heymann Hildegarde¹, Campbell James¹, Galeano Martina¹, Sanchez Luis ², Dokoozlian Nicolas², Webley AD¹, Lerno L.¹, Ebler SE ¹,McElrone Andrew J.³, Bagshaw Sophia¹and Forrestel Elisabeth J.¹

¹Department of Viticulture and Enology, University of California Davis
²​E.&J. Gallo Winery
³USDA, Davis, California

Contact the author

Keywords

heatwaves, irrigation, cabernet sauvignon, wine chemical characteristics, sensory analysis

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Fertilization Lysimeters provide new insights into the needs and impacts of N nutrition on table grape performance and fruit yield and quality

Table grape production requires adequate nitrogen (N) supply to sustain vine performance and obtain high yields. However, excess agricultural N fertilization is a major source of groundwater contamination and air pollution. Therefore, there is a strong need for empirically based precision N fertilization schemes in vineyards, for optimizing grape yield and quality while minimizing their environmental impact.
Our aim was to unequivocally quantify table grape N requirements, elucidate the drivers of daily N uptake, and quantify the relationship between fertigation N levels and vine growth, fruit yield, composition, and quality. For this, forty ‘Early Sweet’ (early-maturing, white) and ‘Crimson seedless’ (late-maturing, red) vines were grown in 500L drainage-lysimeters for 2 fruiting seasons, while subjected to five continuous N fertigation treatments ranging from 10 to 200 ppm.

Sensory impact of sunburn in white wine and mitigation of climateinduced off-flavours by defoliation and application of reflecting particles on grapes

Climate change is a great environmental challenge with large impact on the Wine and sprakling wine industry. Heat waves and dryness cause frequent sunburn damage in white grapes

Impact of grapevine leafroll virus infections on vine physiology and the berry transcriptome

Grapevine leafroll associated virus (GLRaV) infections deteriorate vine physiological performance and cause high losses of yield and fruit quality

The role of terroir in tourism led amenity migration: contrasting effects in Tuscany and the Okanagan valley of British Columbia

Definitions of terroir elude consistent agreement. As defined geographical space the common denominators of its conceptualization include natural and cultural elements of life

Mathematical modeling of fermentation kinetics: a tool to better understand interactions between Torulaspora delbrueckii and Saccharomyces cerevisiae in mixed cultures

Nowadays the use of Torulaspora delbrueckii is more and more common in winemaking. However, its behavior in presence of Saccharomyces cerevisiae is not always predictable.