IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Sensory and chemical profiles of Cabernet Sauvignon wines exposed to different irrigation regimes during heatwaves

Sensory and chemical profiles of Cabernet Sauvignon wines exposed to different irrigation regimes during heatwaves

Abstract

Heatwaves, defined as three or more consecutive days above average historical maximum temperatures, are having a significant impact on agricultural crop yields and quality, especially in arid or semi-arid regions with reduced water availability during the growing season. In grapevine, excessive heat can lead to not only crop loss, but a reduction in quality of the berries and resulting wine. The primary means of mitigating damage due to heatwaves is by applying excess irrigation water prior to and during the heatwave event, thus promoting evaporative cooling by the plant and reducing soil temperatures in the rooting zone and surface.  California wine-growing regions, among others, face a future of
decreased water availability, combined with increases in heatwave incidence, frequency, and intensity. Thus, we will require a greater understanding of the effects of heatwaves and water use at different times during development on grapevine physiology, berry composition, and wine chemistry and quality. In this study we evaluated the impact of different pre-heat wave irrigation practices on vine physiology and berry composition across the 2019 growing season in a commercial Cabernet Sauvignon vineyard in the Northern Central Valley of California, USA (Lodi, CA). Differential irrigation treatments were applied only when a heat event took place and started one or two days before each heatwave and continued until the last day of the heat event. Three irrigation treatments were implemented: a control or baseline, which was exposed to deficit irrigation and held at 60% ET, a second treatment where the irrigation was double the baseline  (2x baseline ET), and third treatment with triple the amount of water of the baseline (3x baseline ET). Replicated wine lots were fermented from each treatment following a standard red wine fermentation protocol. A trained panel characterized  sensorially the aroma and flavor profiles of the wines. Moreover, the wines’ volatile and phenolic profiles were analyzed and correlated to the sensory. 

We found that plants were able to recover from physiological stress caused by heat events but had a negative impact on berry biochemical traits. Negative effects on berry chemistry resulted from over and underwatering during heat waves. The sensory results showed how the differences found in treatments from a physiological and berry chemistry perspective are translated to the wines’ sensory properties and chemical characteristics

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Cantu Annegret¹, Heymann Hildegarde¹, Campbell James¹, Galeano Martina¹, Sanchez Luis ², Dokoozlian Nicolas², Webley AD¹, Lerno L.¹, Ebler SE ¹,McElrone Andrew J.³, Bagshaw Sophia¹and Forrestel Elisabeth J.¹

¹Department of Viticulture and Enology, University of California Davis
²​E.&J. Gallo Winery
³USDA, Davis, California

Contact the author

Keywords

heatwaves, irrigation, cabernet sauvignon, wine chemical characteristics, sensory analysis

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Understanding aroma loss during partial wine dealcoholization by vacuum distillation

Dealcoholization of wine has gained increasing attention as consumer preferences shift toward lower-alcohol or
alcohol-free beverages. This process meets key demands, including health-conscious lifestyles, regulatory
compliance, and the expanding non-alcoholic market [1-3].

Pedicel lenticel diversity of cultivars and their influence on cell death and berry shrivel

Shrinking berries are the common symptoms of Berry Shrivel (BS) and Late-Season-Dehydration (LSD) in grapevine cultivars.

Late frost protection in Champagne

Probably one of the most counterintuitive impacts of climate change on vine is the increased frequency of late frost. Champagne, due to its septentrional position is historically and regularly affected by this meteorological hazard. Champagne has therefore developed a strong experience in frost protection with first experiments dating from the end of 19th century. Frost protection can be divided in two parts: passive and active. Passive protection includes all the methods that do not seek to modify the vine’s environment or resistance at the time of frost. The most iconic passive protection in Champagne is the establishment of the individual reserve. This reserve allows to stock a certain quantity of clear wine during a surplus year to compensate a meteorological hazard like frost during the following years. Other common passive methods are the control of planting area (walls, bushes, topography), the choice of grape variety, late pruning, or the impact of grass cover and tillage. Active frost protection is also divided in two parts. Most of the existing techniques tend to modify vine’s environment. Most of the time they provide warmth (candles, heaters, windmills, heating cables…), or stabilise bud’s temperature above a lethal threshold (water sprinkling). The other way to actively fight is to enhance the resistance of buds to frost (elicitors). The Comité Champagne evaluates frost protection methods following three main axes: the efficiency, the profitability, and the environmental impact through a lifecycle assessment. This study will present the results on both passive and active protection following these three axes.

Towards a European data basis based of advanced multi-isotopic signatures and artificial intelligence: the wine in blue project

Major and trace elements are essential for the development of grapes used for the wine. They are primarily originating from the soil. Some elements are also seldomly added during the wine making process. Therefore, the largest spectrum of major, trace and ultra-trace elements in the final wine product is a good signature of its geographical origin. In the frame of the European tracewindu, we have developed a very original multi-isotopic dilution method using triple quadrupole icp/ms.

Marketing terroir wines

The markets for quality wine are becoming more competitive as newer producers emerge and traditional producers improve their quality. The concept of terroir is one way to differenzi­ate wines in a competitive market and to enhance producer income.