IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Transition metals and light-dependent reactions: application of a response surface methodology approach

Transition metals and light-dependent reactions: application of a response surface methodology approach

Abstract

Light-induced reactions can be responsible for detrimental changes of white and rosé wines. This is associated to the photo-degradation of riboflavin (RF) and of methionine (Met) causing the appearance of light-struck taste (LST). The fault is associated to the formation of volatile sulfur compounds (VSCs), namely methanethiol (MeSH) and dimethyl disulfide (DMDS), leading to cooked cabbage, onion and garlic odours-like [1]. Aside these pathways, other oxidative reactions can occur involving iron and copper that can generate quinones. Moreover, the ability of copper in binding the compounds containing a free thiol group is well known. 
This study aimed to evaluate for the first time the combined effect of iron, copper, and oxygen on LST formation in model wine.
A Surface Response Methodology approach was used considering 3 variables, as iron, copper and oxygen. Based on the experimental design, 15 runs (light-exposed and kept in the dark) were performed in model wine. Furthermore, to better understand the influence of phenolics, the same experimental design was applied in the presence of catechin and caffeic acid, used as model phenols. RF, Met, VSCs, and sensory were determined.
No RF was found in any light-exposed sample analysed. The major decrease of Met was revealed in model solution in which MeSH and DMDS were the highest. The presence of phenolics limited the degradation of Met and, consequently, the formation of MeSH and DMDS. In particular, in most of the runs where caffeic acid was added, VSCs were lower than in the runs in model wine and in the presence of catechin. The presence of iron (10 mg/L and 5 mg/L with oxygen 3 mg/L) led to a higher content of mercaptans in model wine as well as in the presence of catechin and caffeic acid. Our findings suggest that besides RF and Met, the susceptibility of a wine in developing LST appeared to be related to the presence of transition metals as well as to the different phenols that would ordinarily be present in wine. 
This study represents a further step for the deeper comprehension of the photo-induced reactions allowing to pursue the LST prevention in white wine.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Fracassetti Daniela1, Jeffery David2, Ballabio Davide3 and Tirelli Antonio1

1Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
2Department of Wine Science and Waite Research Institute, The University of Adelaide
3Department of Earth and Environmental Sciences, University of Milano-Bicocca

Contact the author

Keywords

riboflavin, methionine, catechin, caffeic acid, volatile sulfur compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

DNA-Free genome editing confers disease resistance in grapevine

Grapevine (Vitis Vinifera L.), one of the most important cultivated fruit crops, is facing significant challenges due to climate change. Specifically, increasing temperatures negatively impact the physiological traits and disrupt plant phenology. Additionally, increased virulence in pathogen attacks and pests leads to significant yield loss, requiring widespread application of plant protection products. Traditional agronomic practices offer only partial mitigation, requiring the development of precise and effective intervention strategies. The economic worth of viticulture has prompted continuous efforts in grapevine genetic improvement programs, traditionally involving conventional breeding and clonal selection that, however, are complex and time-consuming approaches.

Why aren’t farmers using precision viticulture frequently? A case study

n the last years, viticulture precision tools have been made available for farmers for different crops. The feeling that these tools are mandatory on an agriculture of the future have been disseminated by commercial entities but also from policy makers.

Autochthonous non-Saccharomyces extra-cellular metabolism of tryptophan, tyrosine, and phenylalanine

Amino acids are crucial nitrogen sources in yeast metabolism, influencing both biomass production and fermentation rate. The breakdown byproducts of amino acids contribute to the aroma of the wine and wine’s health benefit compounds. This study focused on the yeast’s extracellular metabolic profile of tryptophan, tyrosine, and phenylalanine belonging to the group of aromatic amino acids in experimental Maraština wines. Alcoholic fermentations were conducted on sterile grape Maraština must using seven autochthonous non-Saccharomyces yeasts in sequential fermentation with commercial Saccharomyces cerevisiae.

Sustainable viticulture’ the “semi‐minimal” pruned “hedge” system for grape vines long term experience on cv. Sangiovese (Vitis vinifera L.)

In previous experiments carried out in Bologna on Sangiovese grapevines raised with the Australian “Minimal Pruning” system, it has been shown that this system left an excessive burden of buds on the vine.

The characterization of Vitis vinifera L cv. Cabernet sauvignon: the contribution of Ecklonia maxima seaweed extract

Biostimulants and biofertilizers are considered environmentally friendly and cost-effective alternatives to synthetic fertilizers, plant growth regulators and crop improvement products. Broadly, plant biostimulants are expected to improve nutrient use efficiency, tolerance to abiotic stress, quality traits and availability of nutrients in the soil or rhizosphere. Currently, seaweed extracts account for more than 33% of the total plant biostimulant market. Within this category, Ascophyllum nodosum (AN), is the most widely studied and applied in biostimulant formulations.