IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Influence Of Different Grape Polysaccharides On Phenolic Compounds And Colour Characteristics Of Tempranillo Red Wines

Influence Of Different Grape Polysaccharides On Phenolic Compounds And Colour Characteristics Of Tempranillo Red Wines

Abstract

Polysaccharides (PS) are one of the main compounds found in wines, and they come mainly from the grape cell walls or from the yeasts, and they play an important role in the technological and sensory characteristics of wines. Polysaccharides obtained from yeasts have been more studied, especially mannoproteins, since there are commercial products.
Considering the large amount of waste that comes from the wine industry, the aim of this work was to study the effect of the addition of different fractions of polysaccharides extracted for grape by-products on phenolic composition and colour parameters of red wines in order to improve their quality.
Different extracts of grape polysaccharide were obtained from grape must, pomace and marc. Seven experiences were carried out with a Tempranillo red wine with a high polyphenolic content and with high astringency by duplicate: W1) control wines (without the addition of any product); W2) wines with the addition of PS extracted from white must; W3-W4) wines with the addition of PS extracted from white grape pomace (two doses); W5) wines with the addition of PS extracted from red grape marc; W6) wines with the addition of rhamnogalacturonans type II (RG-II) of 80% purity; and W7) wines with the addition of commercial PS (inactivated yeast). These products were maintained in contact with the red wines for two months, and then they were filtered, bottled and analysed after six months. Polysaccharides, different phenolic compounds and colour were evaluated.
Statistically significant differences were found in all the analysed compounds and colour parameters between treatments. The addition of PS from grape pomace and grape marc reduced the content of total polyphenols, tannins, tartaric esters of hydroxycinnamic acids and flavonols. Factorial analysis showed differences between the wines and clearly separated the treated wines with PS from control wines. The W4 and W5 were characterised by higher concentrations of anthocyanins (monomeric and copigmented) and lower of polymeric anthocyanins and colour intensity than the other wines. In general, the addition of the different PS extracts increased the total PS content.
In conclusion, the addition of different fractions of PS extracts modified the phenolic composition and colour characteristics of red wines and increased the total polysaccharide content that can influence the sensory characteristics of the wines.

 Acknowledgements:

The authors would like to thank the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) for the funding provided for this study through the project RTA2017-00005-C02-01.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Curiel-Fernández María1, Cano-Mozo Estela1, Bueno-Herrera Marta1, Canalejo Diego2, Doco Thierry3, Ayestarán Belén2, Guadalupe Zenaida2 Pérez-Magariño1

1Instituto Tecnológico Agrario de Castilla y León 

Contact the author

Keywords

polysaccharides, polyphenols, grape pomace, grape marc, red wines

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Estimating bulk stomatal conductance of grapevine canopies

In response to changes in their environment, grapevines regulate transpiration using various physiological mechanisms that alter conductance of water through the soil-plant-atmosphere continuum. Expressed as bulk stomatal conductance at the canopy scale, it varies diurnally in response to changes in vapor pressure deficit and net radiation, and over the season to changes in soil water deficits and hydraulic conductivity of both soil and plant. It is necessary to characterize the response of conductance to these variables to better model how vine transpiration also responds to these variables. Furthermore, to be relevant for vineyard-scale modeling, conductance is best characterized using data collected in a vineyard setting. Applying a crop canopy energy flux model developed by Shuttleworth and Wallace, bulk stomatal conductance was estimated using measurements of individual vine sap flow, temperature and humidity within the vine canopy, and estimates of net radiation absorbed by the vine canopy. These measurements were taken on several vines in a non-irrigated vineyard in Bordeaux France, using equipment that did not interfere with ongoing vineyard operations. An inverted Penman-Monteith equation was then used to calculate bulk stomatal conductance on 15-minute intervals from July to mid-September 2020. Time-series plots show significant diurnal variation and seasonal decreases in conductance, with overall values similar to those in the literature. Global sensitivity analysis using non-parametric regression found transpiration flux and vapor pressure deficit to be the most important input variables to the calculation of bulk stomatal conductance, with absorbed net radiation and bulk boundary layer conductance being much less important. Conversely, bulk stomatal conductance was one of the most important inputs when calculating vine transpiration, further emphasizing the need for characterizing its response to environmental changes for use in vineyard water use modeling.

Fully automated non-targeted GC-MS data analysis

Non-targeted analysis is applied in many different domains of analytical chemistry such as metabolomics, environmental and food analysis. In contrast to targeted analysis, non-targeted approaches take information of known and unknown compounds into account, are inherently more comprehensive and give a more holistic representation of the sample composition.

Differential responses of red and white grape cultivars trained to a single trellis system – the VSP

Commercial grape production relies on training grapevine cultivars onto a variety of trellis systems. Training allows for well-lit leaves and clusters, maximizing fruit quality in addition to facilitating cultivation, harvesting, and diseases control. Although grapevines can be trained onto an infinite variety of trellis systems, most red and white cultivars are trained to the standard VSP (Vertical Shoot Positioning) system. However, red and white cultivars respond differently to VSP in fruit composition and growth characteristics, which are yet to be fully understood. Therefore, the objective of this study was to examine the influence of the VSP trellis system on fruit composition of three red, Cabernet Sauvignon, Merlot and Syrah, and three white, Chardonnay, Riesling, and Gewurztraminer cultivars grown under uniform growing conditions in the same vineyard. All cultivars were monitored for maturity and harvested at their physiologically maximum possible sugar concentration to compare various fruit quality attributes such as Brix, pH, TA, malic and tartaric acids, glucose and fructose, potassium, YAN, and phenolic compounds including total anthocyanins, anthocyanin profile, and tannins. A distinct pattern in fruit composition was observed in each cultivar. In regards to growth characteristics, Syrah grew vigorously with the highest cluster weight. Although all cultivars developed pyriform seeds, the seed size and weight varied among all cultivars. Also varied were mesocarp cell viability, brush morphology, and cane structure. This knowledge of the canopy architectural characteristics assessed by the widely employed fruit compositional attributes and growth characteristics will aid the growers in better management of the vines in varied situations.

Assessing the benefits of irrigation access: the case of Southern France vineyards

Agriculture worldwide is threatened by climate change. In particular, declining water resource availability combined with increasing water demand is a key challenge in many rainfed areas, where irrigation appears to be a straightforward adaptation option. In this context, assessing the impacts of irrigation adoption on farm yields and incomes is a necessary step to reflect on the impact of both ex-post and ex-ante policies.

Regional discrimination of shiraz using targeted and non-targeted analytical approaches

Aims: Shiraz is the most widely cultivated grape variety in Australia, and is grown under a range of viticultural and climatic conditions. Given its importance to the Australian wine sector, a number of studies have been conducted in recent years which involved a comprehensive assessment of grape composition, in order to objectively predict wine quality and style outcomes.