IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Addition of Malvasia di Candia Aromatica must and marcs to Golden Ale beer wort to obtain different Italian Grape Ales

Addition of Malvasia di Candia Aromatica must and marcs to Golden Ale beer wort to obtain different Italian Grape Ales

Abstract

Nowadays, the recovery of secondary resources of wine industry is insufficient and the developing of new products and adjuvants from secondary raw materials could become a relevant sector of research. The re-use of byproducts derived from winemaking could improve the sustainability of wine industry and give additional value to other food industries. In the last decades the number of craft breweries have significantly grown all over the world and food market saturation with new food products seemed to be at an all-time high, including alcoholic beverages. For this reason, many breweries started to produce non-conventional beers, also using different raw materials such as ancient grains, spices, and fruits, trying to put on the market something that previously did not exist. Italian Grape Ale (IGA) beers are produced starting from pils or pale malt and should not exhibit a roasty, stout like, profile. Grape or grape must can be pasteurized before the addition and used at different stages of brewing boil, primary/secondary fermentation, or aging. The addition can range from 5% to 40 % of the wort composition. A proper option for brewers could be the addition of an aromatic grape variety to beer wort. Malvasia di Candia aromatica (MaCA) is a grapevine (Vitis vinifera L.) cultivar (cv.) that produces aromatic white grapes and is mainly cultivated in the Emilia Romagna province of Piacenza. Another possibility to make new products in beer industry is related to grape marcs addition in different stages of the brewing process with a high added value from a chemical and nutritional point of view. This work studied the possible addition of MaCA grape must and marcs to Golden Ale beer wort in different percentages: 10 and 20%. Fermentations were carried out in triplicate with a control made of 100% beer wort. General parameters, organic acids (LC-DAD), aroma compounds (GC-MS), target polyphenols (LC-MS/MS) and sensory evaluation were carried out to evaluate changes after MaCA juice and marcs addition. Increasing in acidity values were measured in final products after MaCA juice addition compared to controls (1.98, 2.31, and 2.41 g/L of tartaric acid equivalent in beer controls, MaCA 10%, and MaCA 20%, respectively) and after MaCA marcs addition (1.98, 3.15, and 3.40 g/L of tartaric acid equivalent in beer controls, MaCA 10%, and MaCA 20%, respectively). Other results confirmed that beers with 20% MaCA juice addition and 10% MaCA marcs addition resulted more complex in aroma profile with the presence of free monoterpenic compounds, expecially β-citronellol, linalool, linalool oxides, nerol and α-terpineol. Sensory evaluation confirmed differences in aroma intensity and acidity perception between different beers. Panelists preferred the addition of 20 % of MaCA juice as the best option. Collaboration with a craft brewery will carried out to produce beers with addition of 20 % of MaCA juice and 10% of MaCA marcs in a 12-hL scale.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Romanini Elia1, Gabrielli Terenzio1, Leni Giulia2, Mulazzi Annalisa2, Braceschi Gian Paolo1, Chinnici Fabio3, Castro Marin Antonio3 and Lambri Milena1

1Department for Sustainable Food Process, Università Cattolica del Sacro Cuore
2Department of Animal Science, Food, and Nutrition, Università Cattolica del Sacro Cuore
3Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy

Contact the author

Keywords

grape, marcs, byproducts, beermaking, IGA

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Wine industry, digital transformation, and sustainability: a systematic literature 

This paper aims to (i) identify the state of the art regarding digital transformation in the transition to sustainability in the wine industry, (ii) analyze the adoption of digital technologies at different stages of the winemaking process and their contribution to the triple bottom line of sustainability, and (iii) present a research agenda that facilitates the development of the field, providing contributions to both literature and managerial practice.

Sustaining wine identity through intra-varietal diversification

With contemporary climate change, cultivated Vitis vinifera L. is at risk as climate is a critical component in defining ecologically fitted plant materiel. While winegrowers can draw on the rich diversity among grapevine varieties to limit expected impacts (Morales-Castilla et al., 2020), replacing a signature variety that has created a sense of local distinctiveness may lead to several challenges. In order to sustain wine identity in uncertain climate outcomes, the study of intra-varietal diversity is important to reflect the adaptive and evolutionary potential of current cultivated varieties. The aim of this ongoing study is to understand to what extent can intra-varietal diversity be a climate change adaptation solution. With a focus on early (Sauvignon blanc, Riesling, Grolleau, Pinot noir) to moderate late (Chenin, Petit Verdot, Cabernet franc) ripening varieties, data was collected for flowering and veraison for the various studied accessions (from conservatory plots) and clones. For these phenological growing stages, heat requirements were established using nearby weather stations (adapted from the GFV model, Parker et al., 2013) and model performances were verified. Climate change projections were then integrated to predict the future behaviour of the intra-varietal diversity. Study findings highlight the strong phenotypic diversity of studied varieties and the importance of diversification to enhance climate change resilience. While model performances may require improvements, this study is the first step towards quantifying heat requirements of different clones and how they can provide adaptation solutions for winegrowers to sustain local wine identity in a global changing climate. As genetic diversity is an ongoing process through point mutations and epigenetic adaptations, perspective work is to explore clonal data from a wide variety of geographic locations.

FOLIAR APPLICATION OF METHYL JASMONATE AND METHYL JASMONATE PLUSUREA: INFLUENCE ON PHENOLIC, AROMATIC AND NITROGEN COMPOSITION OFTEMPRANILLO WINES

Phenolic, volatile and nitrogen compounds are key to wine quality. On one hand, phenolic compounds are related to wine color, mouthfeel properties, ageing potential. and are associated with beneficial health properties. On the other hand, wine aroma is influenced by hundreds of volatile compounds. Fermentative aromas represent, quantitatively, the wine aroma, and among these volatile compounds, esters, higher alcohols and acids are mainly responsible for the fermentation bouquet.

Effect of abiotic stress and grape variety on amino acid and polyamine composition of red grape berries

Vines are exposed to environmental conditions that cause abiotic stress on the plants (drought, nutrient and mineral deficits, salinity, etc.). Polyamines are growth regulators involved in various physiological processes, as in abiotic plant stress responses. Stressful conditions can modify grape’s composition, and in this work, we have focused on studying the effect of abiotic stress on the composition of polyamines and amino acids in grapes. In addition, the effect of grape variety on these compounds has been studied.

Vineyard microclimate alterations induced by black mulch through transcriptome reshaped the flavoromics of Cabernet Sauvignon

To alter the vineyard microclimate and produce quality wine under a semi-arid climate, black geotextile inter-row mulch (M) was applied for two vintages (2016-2017). The grapes were sampled at three growing stages to conduct the untargeted metabolome and transcriptome analysis. The upregulated genes related to photosynthesis and heat shock proteins confirmed that M weakened the total light exposure and grapes suffered severe heat stress, resulting in lower sugar and higher acids at harvest. The integration of metabolome and transcriptome analysis identified the key genes responsible for the enhancements in phenylalanine, glutamine, ornithine, arginine, and C6 alcohol concentrations, and the downward trend in ε-viniferin, anthocyanins, flavonols, terpenes and norisoprenoids concentrations in M grapes.