IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Characterization and biological effects of extracts from winery by-products

Characterization and biological effects of extracts from winery by-products

Abstract

Pomace, stem, grapevine leaves, and vine shoots arise as so called winery by-products during the wine production process. Due to their high content of secondary plant metabolites, such as polyphenols, their usage as sources of bioactive compounds offers an opportunity to obtain value-added products for the food and pharmaceutical industry. The aim of the present study was to investigate extracts from winery by-products of Vitis vinifera L. cv. Riesling from the region ‚Pfalz‘ in Rhineland-Platinate, Germany with regard to their chemical composition and biological effect in vitro. Total phenolic contents (TPC) of pomace, stem, vine leaf, and vine shoot extracts were determined by Folin-Ciocalteu method and polyphenolic profiles were characterized by HPLC-UV/Vis-ESI-MS/MS. The extracts showed TPCs ranging from 432 to 665 mg GAE/g extract. Besides flavanols, as for example catechin, epicatechin and procyanidins, phenolic acids and flavonols, such as quercetin und kaempferol derivates were tentatively identified, amongst others, by HPLC-UV/Vis-ESI-MS/MS analysis in the negative ion mode. Stilbenes represent an additional group of polyphenols present in the extracts from winery by-products, including trans-resveratrol, piceid, piceatannol and ε-viniferin being identified. In the human hepatocarcinoma cell line HepG2 effects of the extracts on cell viability, intracellular ATP, the mitochondrial membrane potential (MMP), and tert-butyl hydroperoxide (TBH)-induced intracellular reactive oxygen species (ROS) were determined in vitro. Dose-dependent cytotoxic effects were observed besides protective effects regarding TBH-induced intracellular ROS level, and partially impaired MMP. Thus, winery by-products represent interesting sources of bioactive compounds exerting positive and/or negative effects on mitochondrial function in liver cells.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Fuchs Christine1, Bakuradze Tamara1, Stegmüller Simone1, Steinke Regina1 and Richling Elke1

1TU Kaiserslautern, Department of Chemistry, Division of Food Chemistry

Contact the author

Keywords

polyphenols, HPLC-UV/Vis-ESI-MS/MS, extracts of winery by-products, Vitis vinifera L. cf. Riesling, liver cells

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Viticultural heritage in mountain territories of Catalonia: prospecting in the region of Osona, northern Spain

The recovery of ancestral or minority vine varieties has been gaining great interest in recent years, among other reasons because it is likely that some of these varieties, due to the fact that they are found in relict areas, have a greater potential for adaptation to external factors (biotic or abiotic) and can minimize the effects that climate change is causing in viticulture. Varieties that can be grown at altitude are currently being sought to combat rising temperatures and prolonged extreme drought conditions. In Catalonia, the Pyrenean expansion of vineyard cultivation is documented from the 10th century and has been related to the “small climatic optimum” (9th-12th centuries) and also to seigniorial power.[1] But different adverse climatic periods and the arrival of Phylloxera by the late 19th century made many of these crops disappear.[2]

Construction of a 3D vineyard model using very high resolution airborne images

In recent years there has been a growth in interest and number of research studies regarding the application of remote optical and thermal sensing by unmanned aerial vehicle (UAV) in agriculture and viticulture. Many papers report on the use of images to map or estimate the growth and water status of plants, or the heterogeneity of different parcels. Most often, NDVI or other similar indices are used.

Climatic zoning of viticultural production periods over the year in the tropical zone: application of the methodology of the Geoviticulture MCC system

L’objectif de cette recherche est le zonage climatique des périodes viticoles de l’année dans la Vallée du São Francisco, région brésilienne productrice de vins située en climat tropical semi-aride. Dans cette région, la production peut être échelonnée sur tous les mois de l’année.

Methoxypyrazine concentrations in grape-bunch rachis are influenced by rootstock, region, light, and scion.

Methoxypyrazines (MPs) are readily extracted from grape berry and rachis during fermentation and can impart “green” and “herbaceous” sensory attributes to wine. Irrespective of whether MPs, including 3-isobutyl-2-methoxypyrazine (IBMP), 3-isopropyl-2-methoxypyrazine (IPMP), and 3-sec-butyl-2-methoxypyrazine (SBMP), are extracted from berry or other vine material, techniques for remediation of wine with overpowering sensory characters attributable to MPs suffer from poor specificity or produce undesirable sensory outcomes, meaning that alternative control approaches are needed.

THE IMPACT OF NON-SACCHAROMYCES YEASTS ON THE WHITE WINE QUALITY

Selected strains of non-Saccharomyces yeasts showed a positive effect on sensory characteristics and aromatic complexity of wine. A sequential microbial culture of non-Saccharomyces and S. cerevisiae species is usually inoculated due to poorer fermentability of non-Saccharomyces species. The aim of the study was to investigate the role of non-Saccharomyces yeasts in the production of white wines. We evaluated how individual combinations of sequential inoculations of non-Saccharomyces and S. cerevisiae species affect the aromatic compounds (volatile thiols and esters) and sensory characteristics of the wines.