Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Taking advantage of difficulties. Variable rate application based on canopy maps to achieve a sustainable crop

Taking advantage of difficulties. Variable rate application based on canopy maps to achieve a sustainable crop

Abstract

Aim: The aim of this work was to evaluate the use of Variable Rate Application technologies based on prescription maps in commercial vineyards with large intra-parcel variability to achieve a more sustainable distribution of Plant Protection Products (PPP).

Methods and Results: Eight vineyard plots on three Spanish wineries (Jean Leon, Viñas del Vero and Martín Códax) were selected. In all of these plots, a Variable Rate Application (VRA) system was implemented during the whole season. A UAV flew over plots at three different crop stages (BBCH 60, 75 and 81) in order to generate the corresponding canopy maps. For this process, a multispectral camera with five spectral bands (Red, Green, Blue, NIR and RedEdge) was embedded on the UAV. In order to obtain a vigor map, the NDVI vegetative index was calculated and aggregated at three different levels (low, medium and high vigor). The three different vigor zones were validated by manual measurements of canopy height and canopy width in the three defined zones. Generated canopy maps were transformed into application prescription maps using the DSS DOSAVIÑA®. Prescription maps were uploaded into the VRA sprayer that works as follows: 1) determining its GPS position on the plot, 2) getting the objective volume rate from the prescription map considering the GPS position, 3) reading the actual spraying pressure, 4) readjusting the spraying pressure to the objective volume rate 5) recording, every second, actual data about forward speed, pressure, volume rate and prescribing a volume rate and 6) generating an actual application map with the recorded data. The actual application maps obtained allows comparison with the VRA technology versus the conventional spray application. Preliminary data demonstrated a 20% savings both, on pesticide amount and on water volume, resulting also in a more profitable time consumption. Biological efficacy evaluation demonstrated no differences in control, only an increase in the efficiency of pesticide application and a reduction in environmental contamination risk.

Conclusions:

This work demonstrates in the success of PPP application using VRA technologies. The system was able to maintain or even increase the spray distribution quality in the whole canopy structure, reducing losses to the ground and cutting down drift by adjusting the optimal amount of liquid according the canopy characteristics. As in all cases PPP concentration was maintained following the pesticide label recommendations, the VRA system reduced the total amount of PPP per hectare. All together effective pest/disease control was maintained.

Significance and Impact of the Study: The PPP application requires accuracy, as imprecise or excessive use can lead to serious problems such as environmental pollution, traces of pesticides in food, and health issues in humans. The high degree of intra-parcel variability in the vineyard crop makes it difficult to determine a suitable solution for all areas of the plot. A more sustainable use of PPP will reduce the total amount of pesticides used, reduce the environmental contamination risk and increase food quality.

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

Javier Campos1, José Mª Ayuso2, Mireia Torres3, Miguel Tubío4, Emilio Gil1*

1DEAB – Universitat Politécnica de Catalunya – Castelldefels (Barcelona), Spain
2 Viñas del Vero -Winery – DO Somontano, Spain
3 Familia Torres- Jean Leon Winery, DO Penedes, Spain
4Bodega Martín Códax, DO Rias Baixas, Spain

Contact the author

Keywords

Variable rate application, vineyard, prescription map, unmanned aerial vehicle, DOSAVIÑA

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.