IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Impact of the fumaric acid/glutathione pair addition before bottling on Cabernet Sauvignon wine quality

Impact of the fumaric acid/glutathione pair addition before bottling on Cabernet Sauvignon wine quality

Abstract

Over the last decades, climate change and rising temperatures have impacted the wine industry. Wines from warm regions tend to have a higher pH and lower total acidity. This lack of acidity leads to microbiologically unstable wines (1). Because of the high pH values, higher doses of sulfur dioxide (SO2) are needed to protect the wines, which is in contradiction with the wish of consumers to reduce the use of SO2 in wine. Glutathione (GSH) is known for its antioxidant properties and is already used in white wines to help prevent browning and early spoilage signs (2,3). Fumaric acid (FA), in addition to its high acidifying power, can also be interesting for its antibacterial and antifungal properties (4,5). GSH combined with FA (GSH+FA) could be a candidate to help reduce the use of SO2. Thus, the study aims to evaluate the impact of addition at bottling of GSH, by itself and combined with FA on the quality of a Cabernet Sauvignon red wine.
A sulfite free Cabernet Sauvignon wine was split into two batches: one was kept sulfite-free and the other one was sulfited (80 mg/L). In both batches, FA (0 or 2g/L) and/or glutathione (0, 25 or 50 mg/L), were added. Classical oenological parameters (pH, titratable acidity), color parameters (color intensity, CIELAB), total phenolic compounds (IPT, Folin, total anthocyanins and total tannins), antioxidant capacities (DPPH and CUPRAC) were analyzed just after bottling and six months later. Treated wines were compared to the non-sulfited (NS) and sulfited (S) control wines. Sensory analyses were also performed on wines.

References

(1) Mira de Orduña, R. Climate Change Associated Effects on Grape and Wine Quality and Production. Food Research International 2010, 43 (7), 1844–1855. https://doi.org/10.1016/j.foodres.2010.05.001.
(2) Wegmann-Herr, P., Ullrich, S., Schmarr, H. G., & Durner, D. (2016). Use of glutathione during white wine production–impact on S-off-flavors and sensory production. In BIO Web of Conferences (Vol. 7, p. 02031). EDP Sciences.
(3) Kritzinger, E. C.; Bauer, F. F.; du Toit, W. J. Role of Glutathione in Winemaking: A Review. J. Agric. Food Chem. 2013, 61 (2), 269–277. https://doi.org/10.1021/jf303665z.
(4) Morata, A.; Bañuelos, M. A.; López, C.; Song, C.; Vejarano, R.; Loira, I.; Palomero, F.; Lepe, J. A. S. Use of Fumaric Acid to Control PH and Inhibit Malolactic Fermentation in Wines. Food Additives & Contaminants: Part A 2020, 37 (2), 228–238. https://doi.org/10.1080/19440049.2019.1684574.
(5) Akao, M., & Kuroda, K. (1991). Antifungal activity of fumaric acid in mice infected with Candida albicans. Chemical and pharmaceutical bulletin, 39(11), 3077-3078. https://doi.org/10.1248/cpb.39.3077

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Poster

Authors

Payan Claire1,2, Gancel Anne-Laure1, Christmann Monika2 and Teissedre Pierre-Louis1

1Unité de recherche Œnologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux
2Hochschule Geisenheim University, Von Lade Straße, 65366 Geisenheim, Germany

Contact the author

Keywords

Fumaric acid, glutathione, color, phenolic compounds, organoleptic quality

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

WINE SWIRLING: A FIRST STEP TOWARDS THE UNLOCKING OF THE WINE’STASTER GESTURE

Right after the pouring of wine in a glass, a myriad of volatile organic compounds, including ethanol, overwhelm the glass headspace, thus causing the so-called wine’s bouquet [1]. Otherwise, it is worth noting that during wine tasting, most people automatically swirl their glass to enhance the release of aromas in the glass headspace [1]. About a decade ago, Swiss researchers revealed the complex fluid mechanics underlying wine swirling [2]. However, despite mechanically repeated throughout wine tasting, the consequences of glass swirling on the chemical space found in the headspace of wine glasses are still barely known.

Unveiling the unknow aroma potential of Port wine fortification spirit taking advantage of the comprehensive two-dimensional gas chromatography

Port wine is a fortified wine exclusively produced in the Douro Appellation (Portugal) under very specific conditions resulting from natural and human factors. Its intrinsic aroma characteristics are modulated upon a network of factors, such as the terroir, varieties and winemaking procedures that include a wide set of steps, namely the fortification with grape spirit (ca. 77% v/v ethanol).

New oenological criteria for selecting strains of Lachancea thermotolerans for wine technology

The study conducted various fermentations of different grape juices using various strains of Lachancea thermotolerans and one strain of Saccharomyces cerevisiae. Because of the new conditions caused by climate change, wine acidity must be influenced as well as the volatile profile. Non-Saccharomyces yeasts such as L. thermotolerans are real options to mitigate the impact of climate change in wine production.

SIP and save the planet: a sensory and consumer exploration of australian wines made from potentially drought-tolerant white wine grapes

In order to attenuate the effects of climate change on the ability to cultivate quality wine grape vines in Australia, it is essential to adapt to the projected less favourable Australian climate scenarios. One response may be to convert a portion of the current grapevine plantings to those varieties that demand less water and can tolerate increased heat. This investigation aimed to (i) generate sensory profiles and (ii) obtain knowledge about Australian wine consumers’ preferences and opinions of Australian wines made from potentially drought tolerant, white wine grape varieties not traditionally cultivated in Australia. A Rate-All-That-Apply (RATA) sensory panel (n = 49) generated sensory profiles of 44 commercial white wines made from 7 different white grape varieties (Arinto, Fiano, Garganega, Greco, Verdejo, Verdelho and Vermentino), plus two benchmark examples each of an Australian Riesling, Pinot Gris and Chardonnay wine.

Foam characteristics of white, rosé and red sparkling wines elaborated by the champenoise method

Contribution Foam is the characteristic that differentiates sparkling wines from still wines, being the first sensory attribute that tasters and consumers perceive and that determines the final quality of sparkling wines [1]. The foaming properties mainly depend on the chemical composition of wines [2-3], and different factors involved in wine composition will have an effect on foam quality. In Spain, the sparkling wine market focuses on the production of white and rosé sparkling wine, with very low production of red sparkling wines. However, this type of wines is elaborated in countries like Australia, South-Africa, Argentina, Italy or Portugal, with a great acceptance by consumers. No studies on the foaming characteristics of red sparkling wines have been found.