IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The antioxidant properties of wine lees extracts in model wine

The antioxidant properties of wine lees extracts in model wine

Abstract

While the ethanol and tartaric acid contained in wine lees are typically recovered by distilleries, the remaining solid fraction (yeast biomass) is usually disposed of, thus negatively affecting the overall sustainability of the wine industry. Previously we demonstrated that the wine lees’ solid fraction could be submitted to a food-grade physical extraction method (autoclave, 20 min, 121°C) to yield yeast polysaccharides with proven foaming, emulsifying and wine stabilizing properties [1,2]. In this study, the autoclave extraction procedure was applied directly on lees from red winemaking. As a result, two extracts were obtained: the Total extract, namely the whole lees after autoclave containing the soluble and insoluble fractions; the Supernatant, containing only the soluble compounds released during extraction. The composition of the extracts in terms of protein, polysaccharides, glutathione, total thiols, and total polyphenol content, was determined by spectrophotometric and chromatographic analytical methods. Subsequently, the extract’s oxidative behavior was tested by dissolving them (0.5 g/L) in model wine (20% EtOH, 5 g/L tartaric acid, 5 mg/L Fe, 0.5 mg/L Cu) containing 30 mg/L free SO2 and 0.5g/L catechin. The O2 and SO2 consumption, color development (as a function of catechin degradation), and linear sweep voltammetry (LSV) behavior were investigated. The effect of the wine lees’ extracts was benchmarked against analogs extracts obtained from a lab-grown culture of the same yeast strain present in the wine lees. Samples prepared with the wine lees’ extracts showed a higher O2 and SO2 consumption rates compared to those prepared with the lab-grown yeast extracts. All extracts protected the catechin from oxidation, with the best protective action achieved by the Total wine lees extract. This extract, along with its analog from the lab-grown yeast culture, showed the greatest resistance to anodic oxidation according to LSV. The protective action on catechin displayed by all the extracts was not fully explainable by their content in antioxidant compounds as glutathione, thiols, and wine polyphenols. Interestingly, the fact that the best results were obtained using the Total extracts in which both the soluble (released polysaccharides) and insoluble (yeast cell walls) fractions were present, allowed to hypothesize that other compounds are involved in limiting the catechin oxidation. In this scenario, the candidates are the yeast membrane sterols as they possess an oxygen-consuming action, and yeast cell wall polysaccharides as they could bind to catechin thus making it unavailable for oxidation. To conclude, wine lees can be considered a novel source of yeast extract with potential oenological application also against quality-affecting oxidative reactions. If adopted on a large scale,  this wine lees valorization strategy would result in an improvement of the overall sustainability of the wine industry.

References

[1] De Iseppi, A., Marangon, M., Vincenzi, S., Lomolino, G., Curioni, A., & Divol, B. (2021). A novel approach for the valorization of wine lees as a source of compounds able to modify wine properties. LWT, 136, 110274.
[2] De Iseppi, A., Marangon, M., Lomolino, G., Crapisi, A., & Curioni, A. (2021). Red and white wine lees as a novel source of emulsifiers and foaming agents. LWT, 152, 112273.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

De IseppiAlberto1, Curioni Andrea1,2, Marangon Matteo1,2, Invincibile Diletta3, Slaghenaufi Davide3 and Ugliano Maurizio3

1Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell’Università, 16, 35020 Legnaro, Padua, Italy
2Centre for Research in Viticulture and Enology (CIRVE), University of Padova, Conegliano, Italy
3Department of Biotechnology, University of Verona, San Pietro in Cariano, Italy

Contact the author

Keywords

wine lees, wine oxidation, voltammetry, wine color, by-product valorization

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Fingerprinting as approach to unlock black box of taste

The black box of taste is getting unlocked. The starting point is to distinguish taste from tasting. Consider taste as a product characteristic; tasting is a sensorial activity. Consequently, taste can be studied on a molecular level and therefore be assessed more objectively, whilst tasting is a human activity and by definition subjective.

Relative impact of crop size and leaf removal on aromatic compounds and phenolic acids of Istrian Malvasia wine

Although several studies investigated the impact of crop size or fruit zone microclimate on aromatic or phenolic composition of wines, the effects of these two practices were not assessed and compared in the same study through a technological experiment within the same vineyard. Therefore, their relative effectiveness is hard to compare, which in turn is essential for providing producers with valuable information as a basis to choose adequate approach in yield and canopy management. The aim of the study was to investigate the effects of two crop sizes and two different fruit zone microclimate conditions obtained by leaf removal in a two-factorial experiment, in order to assess and compare their relative impact on Istrian Malvasia (Vitis vinifera L.) white wine aroma and phenolic composition.

Study on the impact of clone on the varietal aroma of Xinomavro

It is well documented that varietal aroma is an important parameter of wine quality. Chemical compounds responsible for wine varietal aroma are sourced from secondary grape metabolites. Until today little research is conducted on the influence of vine clone on the grape aromatic content of Greek grape varieties. Xinomavro (Vitis vinifera L.) is one of the most important Greek grape varieties, valuable for the wine industry of Northern Greece since it contributes to the production of PDO wine of Naoussa, Amindeo and Goumenissa.

French wine sector facing climate change (part. 2) : the implementation of the national strategy

This summary follows this made by Hervé Hannin et al. Entitled “French wine sector facing climate change (part. 1) : a national strategy built on a foresight and participatory approach “. The french wine sector has taken a collective approach to the issue of climate change, and has officially submitted its strategy to the minister of agriculture in 2021. This industry policy is the result of multidisciplinary work carried out through the “laccave” project (metaprogramme accaf, inrae) and its prospective study designed to anticipate climate change in the french wine industry (aigrain p. Et al., 2016). French wine professionals decided to structure a strategy to deal with climate change du in particular to the presentation made at the 2016 OIV congress in Brazil.

INFLUENCES OF SO2 ADDITION AND STORAGE CONDITIONS IN THE DETERMINATION OF MEAN DEGREE OF POLYMERIZATION OF PROANTHOCYANIDINS IN AGED RED WINES

The structural diversity is one of the most remarkable characteristics of proanthocyanidins (PA). Indeed, PA in wines may vary in the B-ring and C-ring substitutes, the C-ring stereochemistry, the degree of polymerization (DP) and the linkage between the monomers. Knowing in detail the structural characteristics of the PA of a wine can help us to understand and modulate several sensorial characteristics of the wine, such as color, antioxidant properties, flavor, and mouthfeel properties. In the last years was discovered and confirmed the presence of sulfonated monomeric and oligomeric flavan-3-ols in wine [1], as well as was pointed out their importance in wine quality [1,2].