Terroir 2016 banner
IVES 9 IVES Conference Series 9 Talking about terroir

Talking about terroir


When talking about terroir, scientists and lay wine tasters, very much including wine journalists and wine growers, too often talk past one another.

“Terroir” may be among the most irritatingly vague and slippery words in the wine growers’ and wine critic’s vocabulary, but scientists, too, seem conspicuously unwilling to render this notion more precise; and if a shared and mutually useful concept cannot be achieved, how can we reach genuine agreement or disagreement in our claims about terroir, let alone address or mitigate one another’s perplexity?

Moreover, it often appears as if parties to alleged explications of terroir fail even to agree on the phenomenon that demands explanation. Wine tasters are frustrated with scientists who make no attempt to account for but instead treat as implausible or debunk claims for organoleptic experience of wine as varying with regularity and predictability depending on site and soil type. Entire books have been written about vineyard geology under the rubric of terroir without accounting for how rocks might actually influence taste. Specialists often advise on where best to plant wine grapes seemingly oblivious that “best” can make sense only if location somehow ultimately influences taste. Yet scientists can be forgiven their frustration with and dismissals of utterly implausible pictures that wine tasters have painted for themselves about how soil and site might influence taste.

Examples will be offered of some common conceptual pitfalls into which both scientists and laity stumble when discussing “terroir.” Treating this term as by its nature evaluative undermines attempts to define site potential; treating it as encompassing anything that might impinge on the eventual character of wine including viticultural and cellar practices renders it so all-encompassing that it fails to mark any significant distinction. Positing something called “minerality in wine” trades on equivocation and conceptual muddle.

It will be proposed that “terroir” be defined as those constraints placed on (or opportunities afforded) a vintner and the eventual flavors of his or her wine by the location in which that wine was grown. Several senses of terroir influence consistent with that definition will be explicated, each differing in scope and in the role assigned to grape variety and vine genetics. It will be argued that the notion of wine as exhibiting terroir character and tasters’ ability to discern characteristics causally associated with site are neither more nor less problematic than the analogous notion of vintage character or its identification as predicated on the influence of weather on vine metabolism, fruit maturation and ultimately flavor. It will be suggested that much more scientific research should be devoted to measuring how much or how little such ability tasters can develop, as opposed to imagine themselves possessing, because this will circumscribe investigations into how site influences flavor and determine how relevant place is to pedigree.


Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article


David Schildknecht

Wine Writer, The Wine Advocate and other wine publications, USA

Contact the author


Touriga Nacional; Touriga Franca; Climate Change; Summer Stress; Douro Region; Morpho Anatomy; Biochemistry


IVES Conference Series | Terroir 2016


Related articles…


Upgrading wine industry solid wastes is considered as one of the main strategies to support the circular economy. Red grape pomaces constitute a rich source of polyphenols, which have been shown to possess antioxidant properties and to provide benefits for human and animal health. The objective of this work was to obtain and characterise polyphenolic extracts from red grape pomaces via green supercritical CO₂ extraction using ethanol as a co-solvent, and to evaluate their antibacterial activity against susceptible and multidrug-resistant Escherichia coli strains of animal intestinal origin.

A spatial explicit inventory of EU wine protected designation of origin to support decision making in a changing climate

Winemaking areas recognized as protected designations of origin (PDOs) shape important economic, environmental and cultural values that are tied to closely defined geographic locations. To preserve wine products and wine-growing practices adopted in different PDOs these areas are strictly regulated by legal specifications. However, quality viticulture is increasingly under pressure from climate change, which is altering the local conditions of many winegrowing areas. Therefore, maintaining traditional wine products will require the adoption of tailored adaptation strategies, including possible changes in the legal regulation of protected wines. To this end, it is necessary to have a comprehensive knowledge on PDOs including their extension, products and allowed practices. While there have been efforts to build databases that summarize the characteristics for individual wine PDO areas and to quantify the related effects of climate change, much information is still included only in the official documentation of the EU geographical indication register and has never been collected in a comprehensive manner. With this study we aim at filling this gap by building a spatial inventory of European wine PDOs that supports decision making in viticulture in the context of climate change. To map and characterize European wine PDOs, we analysed their legal documents and extracted relevant information useful for climate change adaptation. The output consists of a comprehensive geographical dataset that identifies the boundaries of all 1200 European wine PDOs at unprecedented spatial resolution and includes a set of legally binding regulations, such as authorized vine varieties, maximum yields and planting density. The inventory will allow researchers to analyse the impacts of climate change on European wine PDOs and support decision makers in developing tailored adaptation strategies. This includes, among others, the evaluation of new vineyard site selection, the expansion of cultivated varieties or the authorization of irrigation in vineyards.

Evaluation of the impact of different amelioration techniques on the chemical composition and sensory characteristics of smoke impacted wines

AIM: The increasing incidences of wildfires in wine grape growing regions pose a significant risk. Persistent exposure to smoke can compromise the quality and value of wine grapes and adversely affect wines made from smoke exposed grapes.

Grapevine nitrogen retrieval by hyperspectral sensing at the leaf and canopy level

Grapevine nitrogen (N) monitoring is essential for efficient N management plans that optimize fruit yield and quality while reducing fertilizer costs and the risk of environmental contamination. Unlike traditional vegetative-tissue sampling methods, remote sensing technologies, including hyperspectral imaging, have the potential to allow monitoring of the N status of entire vineyards at a per-vine resolution. However, differential N partitioning, variable spectral properties, and complex canopy structures hinder the development of a robust N retrieval algorithm. The present study aimed to establish a solid understanding of vine spectroscopic response at leaf and canopy levels by evaluating the different nitrogen retrieval approaches, including the radiative transfer model.

Extension to the Saumurois-Touraine area of an Anjou-originated method for the characterisation of the viticultural terroirs. (Loire Valley, France)

En Anjou, une méthode de caractérisation des terroirs viticoles a été développée. Elle utilise un modèle de terrain basé sur la profondeur de sol et son degré d’argilisation. Le modèle concerne des terrains issus principalement de roches mères métamorphiques et éruptives du Massif Armoricain. Cet outil de caractérisation des terroirs viticoles nécessite d’être adapté lorsqu’il s’agit d’ensembles géologiques très différents, en particulier sur sols d’apport et de roches mères tendres et poreuses du Bassin Parisien. Une meilleure compréhension de la réserve hydrique des sols apparaît être un critère important de l’interaction entre le milieu et la plante.