IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Peptides diversity and oxidative sensitivity: case of specific optimized inactivated yeasts

Peptides diversity and oxidative sensitivity: case of specific optimized inactivated yeasts

Abstract

Estimation of the resistance of a wine against oxidation is of great importance for the wine. To that purpose, most of the commonly used chemical assays that are dedicated to estimate the antioxidant (or antiradical) capacity of a wine consist in measuring the capacity of the wine to reduce an oxidative compound or a stable radical. In the must/wine matrix, polyphenols are major compounds likely to react with oxidant or radical, but such reaction generate quinones that then are involved in varietal aroma loss via nucleophilic addition reaction. It raises the paradox that a good antioxidant capacity does not imply a good protection of such sensitive compounds as aromatic compounds which are wine key quality markers.

The authors have developed a methodology focusing on the survival time of a sensitive compound to estimate the oxidative sensitivity of a solution. A labeled nucleophile is monitored by UHPLC-ESI-Q-ToF MS periodically for hours (from 0.5h to 72h) after a chemical initiation of oxidation in wine model solution containing 4-methylcatechol. 7 Cystein containing peptides (alone or in combination) are used to artificially increase the nucleophilic environment (and thus the competition for quinone nucleophilic addition) and estimate the half-life of the labeled nucleophile. In addition, soluble fraction released by different inactivated yeasts are also used as complex source of nucleophiles.

Half-life of the labeled compound is the final expression of several complex mechanisms such as nucleophilic competition, but also oxygen consumption, or catechol reduction.
Independently of the mechanisms, we can observe that increasing the nucleophilic environment improve the half life of the labeled nucleophile. It is notably visible for the specific optimized inactivated yeast which released many cysteine-containing peptides.
Finally, this method relies on the fate of one sensitive nucleophile to estimate the sensitiveness of the whole matrix to oxidation. It estimates the half-life of this compound which allows to compare oxidative sensitivity of different matrices under specific oxidation conditions.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Bahut Florian1, Sieczkowski Nathalie1, Nikolantonaki Maria1 and Gougeon Régis D.1

1Univ. Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Lallemand SAS, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, 19 rue des Briquetiers, BP 59, 31 702 Blagnac, France

Contact the author

Keywords

Nucleophile, oxidation, wine, peptide, diversity

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The use of fluorescence spectroscopy to develop a variability index and measure grape heterogeneity

AIM This work aims to investigate fluorescence spectroscopy as a tool to assess grape homogenates to discriminate between samples of varying maturities and to develop an index to objectively characterise the level of grape heterogeneity present in any given vineyard.

Enhancing Monastrell wine quality in a climate change scenario: the role of cation exchange resins in addressing acidity challenges

Climate change significantly impacts vine and grape physiology, leading to changes in wine composition, including reduced titratable acidity, elevated ethanol content, and higher pH levels [1].

NMR profiling of grape musts from some italian regions

With wine fraud, being a widespread problem [1], the need for more sophisticated and precise analytical methods of its detection remains ever persistent.

Appliance of climate projections for climate change study in Serbian vineyard regions

Climate projections considered here are for two periods in the future throughout two IPCC scenarios: 2001 – 2030 (A1B) and 2071 – 2100 (A2) obtained using Coupled Regional Climate

Exploring the genetic diversity of leaf flavonoids content in a set of Iberian grapevine cultivars: preliminary results

The use of grapevine genetic diversity is a way to mitigate the negative impacts of climate change on viticulture systems. Leaf epidermal flavonoids (including flavonols and anthocyanins) are involved in plant defense mechanisms against environmental stresses, like high temperatures or excessive solar radiation [1,2]. Among other factors, they modulate light absorption, which reduces photoinhibition processes in photosynthetic tissues [1]. Therefore, the identification of grapevine cultivars with an increased content on leaf epidermal flavonoids arises as a potential avenue to improve grapevine tolerance to some detrimental environmental stresses.