IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Improved analysis of isomeric polyphenol dimers using the 4th dimension of trapped ion mobility spectrometry – mass spectrometry

Improved analysis of isomeric polyphenol dimers using the 4th dimension of trapped ion mobility spectrometry – mass spectrometry

Abstract

Dehydrodicatechins have recently received attention as oxidation markers especially in grapes and wine. Their analysis mainly uses LC-MS/MS which is able to differentiate them from their natural isomers (dimeric procyanidins), based on specific fragments. However, this technique does not distinguish coeluted compounds showing identical mass spectra. The objective of this work was to develop a method using ion mobility (UHPLC−ESI−TIMS−QTOF−MS/MS) to improve the detection and discrimination of dehydrodicatechins and procyanidins and apply it to grape seed extracts. Oxidation dimers of (+)-catechin and/or (−)-epicatechin were prepared from the reaction with a grape polyphenoloxidase (PPO) extract in aqueous medium (pH~5). A commercial grape seed extract was used for the application of the analytical method. Analyses were performed using the following conditions: an UHPLC C18 column, H2O/HCOOH (90/1) and C2H3N/H2O/HCOOH (80/19/1) as mobile phase, ESI in negative mode, TIMS analyser with the inverse reduced mobility (1/K0) range of 1–1.25, 150 ms ramp time , and a mass range of 150–1500 m/z, using collision-induced dissociation at 27 eV. The method was optimized for the detection and separation of dehydrodicatechins and procyanidinins in the ion mobility dimension using standards and mixtures of oxidation products. Approximately thirty dehydrodicatechins were produced in the reaction mixture with PPO. These compounds included B-type and A-type dehydrodicatechins derived from (+)-catechin and/or (−) epicatechin, containing interflavanic bonds of different natures (biphenyl and biphenyl ether) and positions. Our method allowed the separation by ion mobility of several pairs of isomeric dehydrodicatechins coeluted (or partially) in chromatography. Some of them had similar MS/MS fragmentation pattern and would hardly be distinguished by the use of LC-MS/MS alone. Application of the method on a sample of grape seeds revealed the presence of different B-type procyanidins and two dehydrodicatechins which were derivatives of (+)-catechin and (−)-epicatechin, respectively. It is noteworthy that among these compounds a good separation by ion mobility was obtained for a B-type dehydrodicatechin, procyanidin B1 and procyanidin B3 which were partially coeluted in chromatography.

To the best of our knowledge, this is the first time that ion mobility has been applied to the analysis of (+)-catechin and/or (−)-epicatechin-derived dehydrodicatechins. Mainly, the method proposed in this work provided the detection of several isomers of dehydrodicatechins and procyanidins in model solutions and grape seeds, thanks to the additional separation obtained by ion mobility. This method has the potential to be applied on several other natural complex matrices such as wine and by-products for the monitoring of dehydrodicatechins, considered as oxidation markers.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

De Sousa Dias Aécio1, Verbaere Arnaud1, Meudec Emmanuelle1, Deshaies Stacy1, Saucier Cédric1, Cheynier Véronique1 and Sommerer Nicolas2

1SPO, INRAE, Université de Montpellier, Institut Agro Montpellier
2INRAE, PROBE Research Infrastructure, PFP Polyphenol analytical facility

Contact the author

Keywords

ion mobility spectrometry, dehydrodicatechins, flavan-3-ols oxidation markers, procyanidins, grape seeds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Influence of cork density upon cork stopper resiliency after opening a sparkling wine bottle

After Champagne popping, the first consumer’s observation is the shape of the cork stopper. Consumers expect a “mushroom shape”. Nevertheless, we sometimes observe a “barrel” shape due to inappropriate cork’s elastic properties. The aim of this study was to follow the loss of cork stopper resiliency during 26 months according to the density (d) of the cork in contact with the wine. 1680 disks were weighed + measured and divided in 6 density classes: High (H1 d= 0,19 g/cm3 – H2 d= 0,21 g/cm3), Medium (M, not studied) and Low (L1 d= 0,13 g/cm3 – L2 d= 0,14 g/cm3). Then, 138 technical cork stoppers were produced for each of the 4 studied groups. These corks consisted of an agglomerated natural cork granule body to which two natural cork disks were glued. A total of 552 bottles of sparkling wine were closed with these corks and open after 13, 19 and 26 months to follow cork resiliencies. Wine bottles were stored horizontally; thus, the external natural cork disks were in contact to the wine. During the 26 months of the study, highly significant differences (ANOVA) were observed between the resiliencies of H-corks and those of L-corks, whatever the time studied. The diameters of the L-corks were statistically higher than those of the H-corks. No significant differences were observed between L1 and L2 corks. At the opposite, differences were noted between H1 and H2 at 19 and 26 months. This could be explained by the heterogeneity of the resiliency that was higher for H-corks than for L-corks. Finally, the corks were visually (12 judges) divided in 3 classes corresponding to high (expected mushroom shape, i.e high resiliency), medium (irregular shape of the disk in contact with the wine and/or low premature deterioration of the expected resiliency) and low qualities (barrel shape = premature deterioration of the resiliency). The corks were also divided in 3 categories corresponding to 0-33%, 34-66% and 67-100% resiliency. A strong correlation was noted between the visual and the instrumental categorizations. This study strongly evidenced 1) the importance of the cork density on the cork stopper behaviour when opening the bottle and 2) the interest of an instrumental approach reflecting the consumer’s perception.

Innovative strategies for reducing astringency in Mandilaria wines 

Mandilaria, a red grape variety indigenous to the Aegean islands, is well known for its robust tannins and pronounced astringency, which can challenge the palatability and marketability of its wines. The aim of this study was the reduction of astringency in wines made exclusively from mandilaria grapes through dehydrations practices and targeted winery applications.

What is the best time to harvest grapes destined for withering? Ripeness and dehydration length affect phenolic composition of Nebbiolo grapes

Sfursat di Valtellina is a DOCG reinforced wine produced in Valtellina from partially withered red grapes of Vitis vinifera L. cv. Nebbiolo. The grape ripeness degree and the dehydration process strongly influence the physicochemical characteristics of grapes [1, 2, 3]. In particular, grape skin and seeds contain several classes of phenolic compounds strictly associated with red wine quality, which are significantly affected by these factors [4]. The aim of this research is to assess the combined influence of different ripeness levels and withering rates on the standard chemical composition and phenolic profile of winegrape in order to provide new insights and approaches to the management of withering, searching for the valorization of grape potentialities.

Prise en compte de la notion de terroir dans les AOC en France : Aspects Culturels

“The vine and the wine are great mysteries. Only the vine makes us intelligible what is the true flavor of the earth”. Colette. The notion of terroir has always been the basis of the notion of AOC from which it is inseparable. It is moreover the definition of the production zone which was at the start of the attempts to set up the designation of origin, at the beginning of the century, after the phylloxera crisis.

Effects of laccase from Botrytis cinerea on the oxidative degradation kinetics of the five natural grape anthocyanins

Enzymatic browning[1] is an oxidation process that occurs in many foods that increases the brown colour[2]. This problem is especially harmful in the wine industry[3]. especially when the grapes are infected by grey rot since this fung release the oxidative enzyme laccase[4]. In the particular case of red wines, the presence of laccase implies the deterioration of the red colour and can even cause the precipitation of the coloring matter (oxidasic haze)[5].