IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Biochemical characterization of grape skin cell wall during ripening in relation to Botrytis cinerea susceptibility of two Champagne cultivars

Biochemical characterization of grape skin cell wall during ripening in relation to Botrytis cinerea susceptibility of two Champagne cultivars

Abstract

Pectins or pectic polysaccharides are one of the major components in grape skin cell wall, they contribute to physiological processes which determine the integrity and rigidity of grape skin tissue. Their composition and organization in the cell wall matrix differ according cultivars and also play an important role in the defense mechanisms against plant pathogen and wounding. During grape ripening, important structural and biochemical changes are modifying the cell wall integrity due to pectolytic enzymes such as pectin methylesterases and polygalacturonases which participate to the cell wall weakening and increase the grape susceptibility to pathogens such as Botrytis cinerea.This work investigated the distribution of pectic polysaccharides in the cell wall according to their molecular weight and the localization of pectins (homogalacturonans) highly and low methyl-esterified in grape skin tissue throughout the berry development of the two main Champagne cultivars (Vitis vinifera cv. Pinot noir and Chardonnay), in relation with in vitro Botrytis cinerea susceptibility tests. The skin cell wall composition was evaluated by size exclusion chromatography (SEC) and the pectin localization by immunogold labelling.The comparative study between the two main grape cultivars from Champagne region highlights differences in pectin composition, Chardonnay skins are characterized by less pectic polysaccharides of high molecular weight (HMW) related to a lower susceptibility to Botrytis cinerea. The pectins cellular localization showed that pectins highly methyl-esterified are more important in Pinot noir cell walls than Chardonnay ones, suggesting different mechanisms of cell walls degradation between Chardonnay and Pinot noir skins.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Andre Marie1, Lacampagne Soizic1, Barsacq Audrey1, Mercier Laurence2 and Gény-Denis Laurence1

1Unité mixte de recherche Œnologie, UMR 1366 Université de Bordeaux, INRAE, Bordeaux INP, ISVV MHCS, Epernay, 33882, Villenave d’Ornon, France
2MHCS, Epernay, France

Contact the author

Keywords

skin, ripening, pectins, SEC, Champagne

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Primary results on the characterisation of “terroir” in the certified denomination of origin Rioja (Spain)

La integración de variables referentes al clima, la litología y la morfología del relieve y el suelo en la D.O. Ca Rioja permite la configuración de un modelo a través de cuya validación se obtiene la delimitación de zonas vitícolas.

Factors affecting flavonols instability of red wines due to climate change

Due to varietal factors, the formation of undesirable deposits of flavonols, especially quercetin (Q), occurs in several red wines.

Harnessing whole genome sequencing data to predict protein structure and function variation in grapevine

Grapevine (Vitis vinifera) is amongst the world’s most cultivated fruit crops, and of global and economic significance, producing a wide variety of grape-derived products, including wine, and table grapes. The genus Vitis, encompassing approximately 70 naturally occurring inter-fertile species, exhibits extensive genetic and phenotypic diversity, highlighted by the global cultivation of thousands of predominantly Vitis vinifera cultivars. Despite the importance of harnessing its naturally occurring genetic diversity to pursue traits of interest, especially considering the continued and growing demand for sustainable high-quality grape production, the systematic characterization of available functional genetic variants remains limited.

«Nektar» -the new red variety wine grape aromatic high quality

The multi-annual study of the International Genetic Bank of the Grape Vine has shown that red varieties are enough, but the red varieties that produce high-quality red wine are minimal.

Tracking the origin of Tempranillo Tinto through whole genome resequencing and high-throughput genotyping  

Grapevine cultivars are vegetatively propagated to maintain their varietal characteristics. This process of multiplication leads to spontaneous somatic mutations that can eventually generate a variant phenotype, of potential interest for cultivar improvement and innovation. However, regardless their phenotypic effect, somatic mutations stack in the genome, and they can be used to reveal the origin and dissemination history of ancient cultivars. Here, a stringent somatic variant calling over whole genome resequencing data from 35 ‘Tempranillo Tinto’ clones or old vines from seven Iberian winemaking regions revealed 135 single nucleotide variations (SNVs) shared by some of the clonal lines.