IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Vitamins in grape must: let’s lift a corner of the veil

Vitamins in grape must: let’s lift a corner of the veil

Abstract

Although vitamins stand as major actors to yeasts prime metabolic pathways, their significance in oenology and winemaking remains rather obscure nowadays, having been mostly unexplored for several decades. While those investigations allowed for a primary estimation of the vitaminic contents of musts and wines, no quantification of their vitameric distribution has ever been performed. Here, in order to elucidate a still-obscure facet of wine composition, 19 different vitamers from 8 different vitaminic groups (B1, B2, B3, B5, B6, B8, B9, C) have been simultaneously and directly analyzed by an optimized rapid HPLC procedure in 85 white grape musts from different geographical origins, varieties, as well as vintages. This novel insight on must composition reflects the overall must diversity, since their vitameric contents vary highly between musts. Plus, this investigation provided leads for characterization of the matrix, since, notably, distinctive patterns could be observed in regards to the musts area of cultivation. Such an analytical tool allows for a precise estimation of the must contents in the different water-soluble vitamers, to provide with a
refined management of winemaking and avoid significant deficiencies that could occur during fermentation, or as a result of winemaking practices. As such, the impact held by some oenological practices on vitamins has also been investigated, and proved to have no significant effect. Overall, this offers ground for further determination of the vitamin significance in oenology, and provide a new tool for alcoholic fermentation management.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Evers Marie Sarah1,2, Alexandre Hervé1, Morge Christophe2, Sparrow Celine2, Gobert Antoine2 and Roullier-Gall Chloé1

1Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, 2 rue Claude Ladrey, 21000 Dijon, France
2Sofralab SAS, 79 avenue A.A, Av. Alfred Anatole Thévenet, 51530 Magenta, France

Contact the author

Keywords

vitamins, grape must, HPLC, oenology, winemaking

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Disentangling the sources of variation in stomatal regulation in field-grown cultivar-rootstock combinations

The inherent variability of Nature poses challenges for researchers to draw clear conclusions from field experiments. Identifying and assessing adaptations to climate change requires agronomic field trials.

What happens with the glutathione during winemaking and the storage of the wine?

We tried to give a part of the answer to this question by monitoring glutathione during winemaking and storage. The novelty of our approach is to quantify simultaneously the three known forms of glutathione: free glutathione (GSH), oxidized form (GSSG) and glutathione-S-sulfonate (GSSO3H).

Phenolic composition of Bordeaux grapes 2009 vintage: comparison with 2006, 2007 and 2008 vintages

‘Cabernet sauvignon’ and ‘Merlot’ are among the most recognized red wine grape cultivars. This work is aimed at investigating the proanthocyanidin composition of skins and seeds to determine the grape variety and the vintage effects on the phenolic composition of Bordeaux grapes.

Phenolic extraction and dissolved oxygen concentration during red wines fermentations with Airmixig M.I.™

During red wine fermentation, the extraction of phenolics compounds and sufficient oxygen provision are critical for wine quality [1,2]. In this trial, we aimed at evaluating the kinetics of phenolic extraction and dissolved oxygen during red wine fermentations using the airmixing system. Twenty lots of red grape musts were fermented in 300.000 L tanks, equipped with airmixing, using two injection regimes (i.e., high and low intensity, and high and low daily frequency). An oxygen analyzer was introduced into the tanks in order to record the concentration of dissolved oxygen over time.

Function, barriers, and the environmental benefits of reuse bottle system for wine

With 0.3 to 0.7 kg CO2eq per 0.75 L wine, the glass bottle is the main contributor to the carbon footprint of a bottle of wine.